NATIONAL PETROLEUM RESERVE IN ALASKA

GEOLOGICAL REPORT

SOUTH BARROW WELL NO. 19

HUSKY OIL NPR OPERATIONS, INC. Prepared by: R. G. Brockway

For the

U. S. GEOLOGICAL SURVEY Office of the National Petroleum Reserve in Alaska Department of the Interior AUGUST 1983

TABLE OF CONTENTS

	Page
GEOLOGIC SUMMARY	
Introduction	1 1 3 4
Structure Map (Figure 3)	5
WELLSITE GEOLOGIST'S REPORT	
Introduction	5
Wireline Log Tops	5
Cretaceous Torok Formation	
Jurassic Kingak Formation	. 8
Triassic	-
Undifferentiated	
Indeterminate Argillite	
Structure	10
Torok Formation	11 11 12
Conclusions	
LIST OF FIGURES	
Figure 1 - Location Map	. 4

PERTINENT DATA AND APPENDICES

$\underline{\mathsf{Appendix}}$

Α.	Summary of Pertinent Data	A-1-2
В.	Drill Cuttings and Core Descriptions	B-1-9
c.	Log Analysis	C-1-4
D.	Core Analysis Report Report of May 3, 1978	D-1 D-2 D-3
E.	Drill-Stem Test Report	E-1
F.	Gas Analysis Reports Report of May 15, 1978 Report of May 15, 1978 Report of May 15, 1978 Report of May 18, 1978 Report of May 18, 1978 Report of May 18, 1978 Report of February 27, 1979 Report of February 27, 1979 Report of January 17, 1980	F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10
G.	Crude Oil Analysis Report	G-1-2
Н.	Production Test No. 1	H-1-16

COMPOSITE LITHOLOGY LOG (In Pocket)

GEOLOGIC SUMMARY

INTRODUCTION

The South Barrow Well No. 19, 1320' FEL and 1320' FSL, protracted Section 23, T22N, R17W, Umiat Meridian (Figures 1 & 2), was drilled to define the northern limits of the East Barrow Gas Field. Drilling began below conductor casing at 80' (driller's depth) on April 18, 1978. Rocks of Cretaceous through Triassic age were penetrated. The drilling was terminated at a total depth of 2,300 feet on May 6 in argillite of indeterminate age, and the rig was released on May 16, 1978.

In each of the South Barrow wells drilled after South Barrow No. 13, an inhibitive mud system, containing calcium-chloride, was used after intermediate casing (commonly 9-5/8" to approximately 1,500 feet). This was done in order to minimize damage to potential reservoirs caused by swelling clays, which are present in the Barrow sandstones and the Sag River Sandstone (determined by water susceptibility tests on cores from South Barrow Nos. 12 and 13 wells). The high concentrations of calcium-chloride used in the section below the intermediate casing, necessitated running a dual laterolog, as the high calcium and chloride ion concentration in the drilling mud adversely affects the measurement of conductivity by the dual induction log. The dual induction log was run in the upper part of each well where fresh-water-mud was used.

Five conventional cores were cut and 75 sidewall cores were shot with a recovery of 66. One drill-stem test and one production test were undertaken.

The well was completed as a suspended gas well.

PRE-DRILLING PROGNOSIS

The primary objective of the well was the Lower Barrow sandstone, with the Sag River Sandstone, thin sandstones in the lower "Pebble Shale", and possibly the Upper Barrow sandstone, as secondary objectives.

POST-DRILLING SUMMARY

Drilling of Well No. 19 confirmed a northward extension of the East Barrow field and established that it was higher on structure than either of the two correlating wells, South Barrow Wells Nos. 12 and 17. At the top of the Lower Barrow sandstone, Well No. 19 was 17 feet higher than No. 12 and 81 feet higher than No. 17 (Figure 3).

The Lower Barrow sandstone had 17 net feet of porous sandstone with porosities averaging 22% and a water saturation of 40% (Appendix C). This zone was production tested with a calculated absolute open flow of 7.22 MMCFGPD (Appendix H). This establishes this well as the best in the field.

A drill-stem test of the Sag River Sandstone recovered an estimated 800,000 CFGPD and 7 gallons of gassy oil-cut mud from the interval 2161-2245' (Appendix E). Analysis of Core No. 5 (2230-2245') shows porosities of 9.1 to 22.1 and poor to fair permeabilities.

Other secondary objectives ("Pebble Shale" and Upper Barrow) contained hydrocarbon shows, but because of thin bedding, low permeabilities and argillaceous content, they were not deemed worthy of testing.

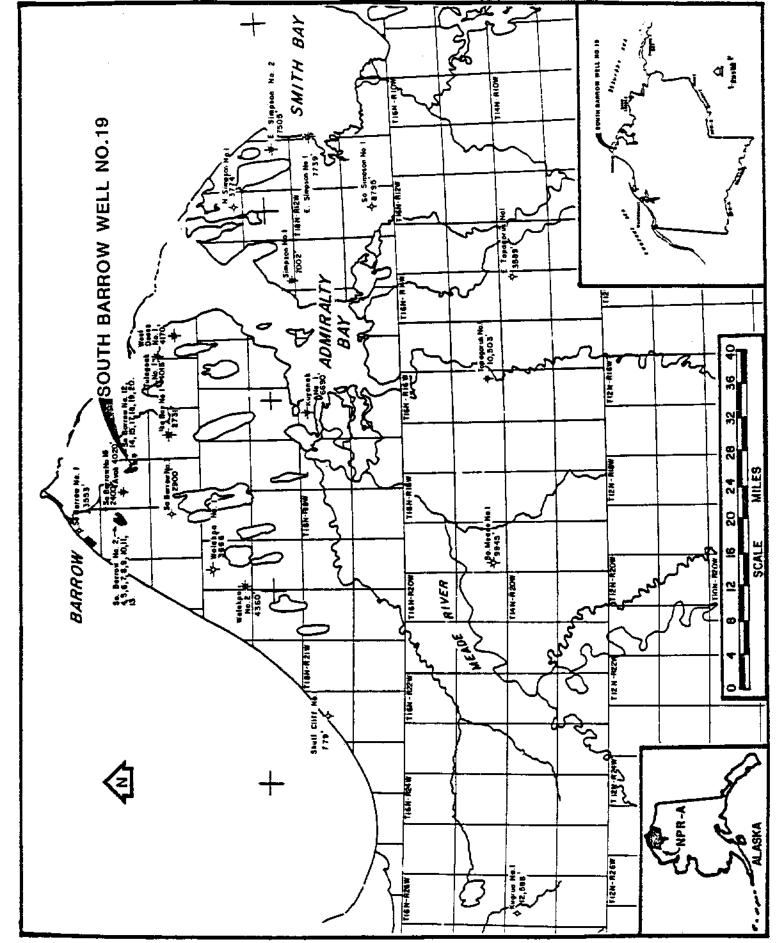


FIGURE 1 - LOCATION MAP - SOUTH BARROW WELL NO. 19

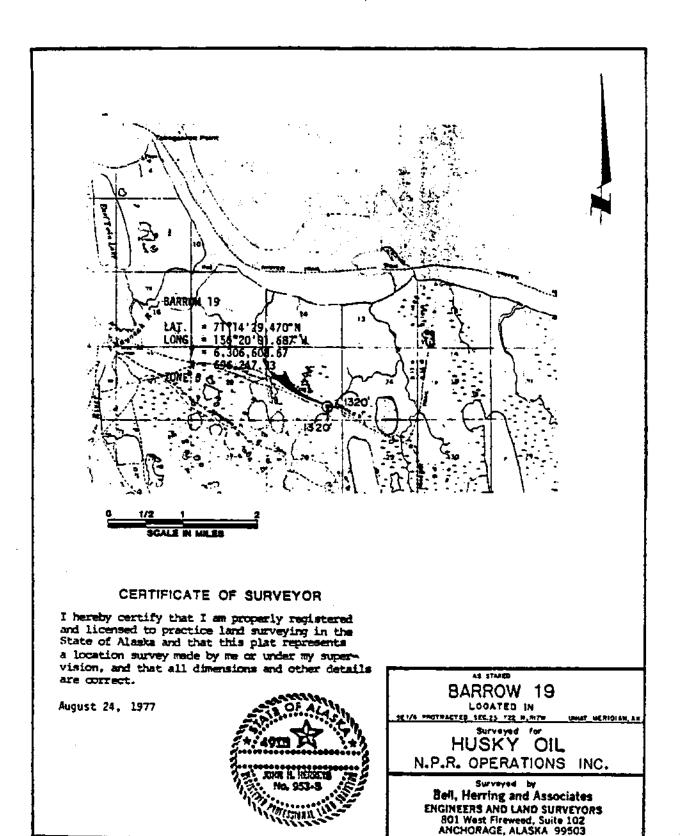


FIGURE 2 - CERTIFICATE OF SURVEYOR - SOUTH BARROW WELL NO. 19

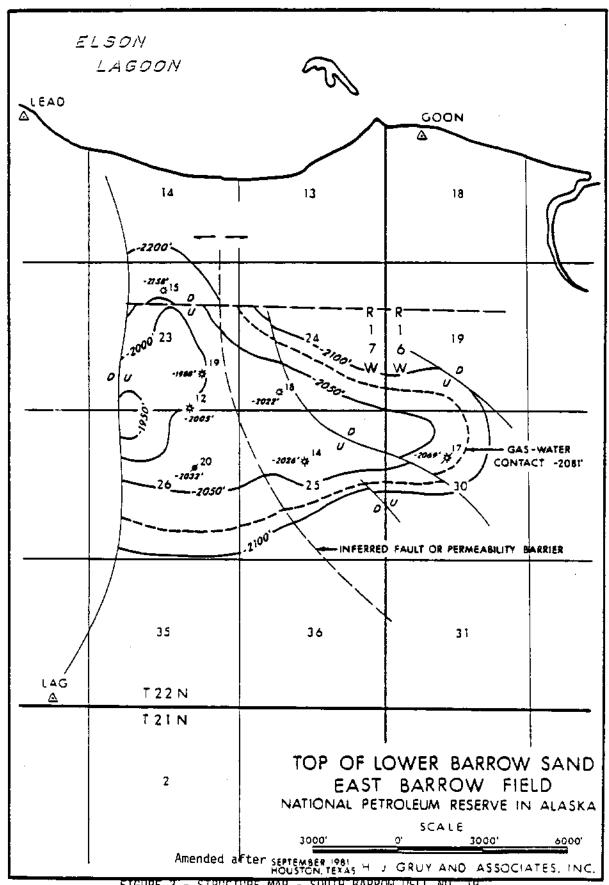


FIGURE 3 - STRUCTURE MAP - SOUTH BARROW WELL NO. 19

WELLSITE GEOLOGIST'S REPORT BY: D. YOUNG REVISED BY: R. G. BROCKWAY

INTRODUCTION

The South Barrow Well No. 19 was drilled as a step-out well to help delineate the northern limit of the East Barrow Gas Field. The Lower Barrow sandstone was the primary objective. Additional objectives were the Sag River Sandstone and the thin persistent sands of the "Pebble Shale". The well was drilled to a total depth of 2,300 feet, penetrating rocks of Cretaceous to Triassic age and terminated in the argillite of indeterminate age. The Lower Barrow sandstone included 17' of net porous sand; it was production tested at a rate of 7.22 MMCFGPD calculated absolute open flow. The "Pebble Shale" sandstone stringers were poorly developed and were not tested. The Sag River Sandstone, with a gross thickness of 54' of shaly sands, was drill-stem tested at an estimated rate of 800 MCFGPD. Gas- and very slightly oil-cut mud were recovered from the test tools. The well was completed as a suspended gas well from the Lower Barrow sandstone.

A total of five conventional cores were cut. Core No. 1 was cut for stratigraphic purposes to help define the Torok-"Pebble Shale" boundary. Cores Nos. 2, 3, 4, and 5 were taken for reservoir purposes. In addition to the conventional cores, 75 sidewall cores were shot with 66 recovered. Drill-bit cuttings were continuously collected from spud to total depth. Sample increments of 30' were used from spud to 1500' and 10' from 1500' to total depth.

STRATIGRAPHY

WIRELINE TOPS

	DRILLED DEPTH (FEET BELOW KELLY BUSHING)	SUBSEA
CRETACEOUS		
Torok Formation	100'	-70'
"Pebble Shale"	samples start 1352'	-1322'
JURASSIC		
Kingak Formation	1744'	-1714'
Upper Barrow sandstone	1952'	-1922'
Lower Barrow sandstone	2018'	-1988'
TRIASSIC		
Undifferentiated	2153'	-2123'
Sag River Sandstone	2194'	-2164'

INDETERMINATE Argillite

2264'

-2234'

TOTAL DEPTH

2300'

-2270'

CRETACEOUS

Torok Formation: 100-1352'

Lithology of the Torok consists of interbedded sandstones, siltstones and claystones. The sandstones, most prominent in the upper 370' and lower 150' of the formation, are light gray, fine grained, hard, carbonaceous, argillaceous, calcareous and in part pyritic. A few small gas shows were recorded below 1190'. Siltstones are dark gray, hard and calcareous. The claystones are medium to light gray, soft, sticky, and silty in part. Scattered fossil fragments are present.

The first paleontological age determinations by Anderson, Warren & Associates, Inc. indicate an age of Early Cretaceous, Aptian to Albian, to a depth of 1330'. Faunal diversity and abundance suggest a middle neritic environment of deposition for the interval from 100' to 820'. With species diminishing in diversity and abundance from 820' to 1330', only some type of marine conditions is suggested. No identifiable log correlations exist within the Torok, although faunal correlation points at 160' and 430' appear to be recognizable with South Barrow Wells Nos. 12, 14 and 17.

Bulk lithology for the Torok is approximately 80% claystone, 17% siltstone, and 3% sandstone.

"Pebble Shale": 1352-1744'

The top of the "Pebble Shale" is based on a gamma-ray log pick at 1352' and is supported by paleontological age determinations as the boundary between Aptian-Albian and Neocomian age faunas. The boundary was cored with no sharp contact apparent. The contact appears to be at 1350' in Core No. 1 (1330-1360') where medium to dark gray claystones grade to dark gray hard, fissile shales with rare "floaters" of frosted quartz grains. These shales continue downward with an increasing brown color to a depth of 1497'. Some tan to brown limestone was observed in the samples below 1390' (abundant at 1470-1480').

The interval from 1497' to 1645' contains the thin sandstone beds that are found in other Barrow wells in the area. No improvement in thickness or porosity was noted in these sands over those in other wells, although increased gas readings are associated with most of them. The sandstones of this interval are thin bedded (maximum 7') light gray, fine grained, silty and argillaceous. Hydrocarbon fluorescence was noted in the sandstones below 1587'. Interbedded with the sandstones are brown silty shales.

Dark brownish-gray shales with a few thin sandstones occupy the interval 1645-1704'. A chert and quartz pebble conglomerate and fine grained sandstone are present at 1704-1712' (DLL log).

It appears from the electric logs that the zone 1712-1744' may be a transition zone above the lower Cretaceous unconformity. Sidewall cores at 1732' and 1737' recovered black shale with medium to coarse grained and pebble-size quartz and chert. Ditch samples indicate brown shales, dark gray siltstone, and 20-30% loose chert, quartz, and argillite pebbles. A 320-unit gas reading was present from 1740-1745', and it may be that a remnant of the basal "Pebble Shale" conglomerate is present from 1740-1744'. The E-logs indicate a "dirty" sand, conglomerate or siltstone in this interval.

Age of the interval 1680-1740' is determined by Anderson, Warren & Associates, Inc. (Final Micropaleontological Report, July 25, 1978) as Early Cretaceous to Late Jurassic (Neocomian). They note that "this assemblage contains forms suggestive of Late Jurassic but could conceivably still be in Early Creataceous". Possibly the Jurassic forms are reworked from pre-existing Jurassic rocks cut by the lower Cretaceous unconformity.

The environment of deposition for the "Pebble Shale" is thought to have been neritic to middle bathyal with turbid conditions.

Bulk volume is approximately 77% claystone, 15% siltstone and 8% sandstone.

JURASSIC

Kingak Formation: 1744-2153'

The top of the Kingak Formation, which contains the Upper and Lower Barrow sandstones, has been placed at 1744', the base of the transition zone. From 1744' to 1952', the rocks are composed of brownish-gray shales and brown claystones with interbedded light and dark gray siltstones and some thin light gray, fine to very fine grained sandstones.

Upper Barrow sandstone: 1952-2006'

Sandstones of the Upper Barrow are light gray, very fine grained, glauconitic and argillaceous. Fossil wood and lignite are common. Interbedded with the sandstones are thin siltstones and shales. Poor hydrocarbon shows were observed in the sandstones. Environment of deposition is thought to be shallow marine off bar facies.

The base of the Upper Barrow has been picked at 2006', the base of a thin resistive zone on the DIL or DLL logs and a shale break on the gamma-ray logs that can be correlated throughout the field.

Separating the Upper Barrow from the Lower Barrow is a sandstone and shale sequence. The sandstones are similar to those of the Upper Barrow and have some hydrocarbon shows. At the base of this interval and capping the Lower Barrow sandstone is a thin 1-2' shale that is readily recognized and used as a marker bed on the gamma-ray logs throughout the field.

Lower Barrow sandstone: 2018-2037'

At 2018', a 19' section of porous Lower Barrow sandstone was entered. The sands of the Lower Barrow are interpreted to be central bar facies. The quartz sand is tan to light gray, very fine grained, clean to slightly argillaceous, friable, glauconitic, with occasional lignite and fossil wood fragments. Some swelling clay in the matrix is indicated by swelling and disintegration of samples in fresh water. Sidewall cores indicate claystone pods and partings with poorly preserved crossbedding at 2032'. Large, soft, clayey, dark green glauconite grains were noted in a sidewall core at 2036'. Good hydrocarbon shows were observed and the zone 2018-2044' was production tested at a calculated AOF rate of 7.22 MMCFGPD.

The Kingak Formation below the Lower Barrow from 2037' to 2153', consists of light gray, very fine grained, argillaceous quartz sandstone interbedded with dark gray siltstones and light gray silty claystone.

Core No. 2 (2039-2069') is interbedded light gray, very fine grained, argillaceous sandstone and medium to dark gray siltstone, with common lignite and fossil wood. Swelling clays are indicated by fresh-water tests. A thin bed of pelecypods (species unknown) occurred at 2048'. No dips were apparent from the core and it is thought that bioturbation has removed all evidence of bedding in these strata.

The strata of the Kingak Formation have been assigned an Early to Middle Jurassic age (AWA Zones F-17 to F-18).

Environment of deposition below 2153' to 2250' is thought to have been inner to middle neritic.

TRIASSIC

Undifferentiated: 2153-2194'

A 41' interval of Triassic rocks, identified by paleontology, is present above the Sag River Sandstone. It is composed of thin interbedded tan to light gray, fine to coarse grained sandstones, medium gray siltstones and light gray claystones. The faunal top of the Triassic (AWA Zone F-19 which extends to 2250') was picked at 2153'. No hiatus is apparent in the samples.

Sag River Sandstone: 2194-2264'

The Sag River top was picked on the basis of samples and electric log responses and is marked by a thin bed of limestone that is tan, hard, sandy, and slightly glauconitic. This bed was also noted in South Barrow Well No. 17. The top of the sandstone is thought to be at 2200'. Cores Nos. 3, 4, and 5 (2209-2245') were cut in the Sag River. Lithology of the cores was very fine grained quartz sandstone. The sandstone is brown, well sorted, well rounded, argillaceous, calcareous, with common shell fragments and glauconite. Thin biocalcarenite shell pods (probably echinoid plates and pelecypods) occur at 2219' and 2230-2233'. The limestone is white to tan with viscous oil in intergranular porosity. Thin

stringers of soft amorphous glauconite and dark gray-brown shale also occur. At 2222', bedding planes of 45° were noted. These are interpreted as probably foreset beds. Minor fracturing was noted at this depth also, being parallel to and at right angles to the bedding planes. Good oil stain is present throughout the Sag River. A much higher percentage of sandstone was noted in the Sag River in this well than in South Barrow No. 17 where sandy biocalcarenite is the predominant lithology.

Drill-Stem Test No. 1 (2161-2245') recovered an estimated 800 MCFGD and 7 gallons of gas- and slightly oil-cut mud.

Lithology from 2245' to the top of the argillite at 2264' consists of light gray, argillaceous, calcareous sandstone with interbedded medium gray, soft claystone.

Environment of deposition for the Sag River is suggested to be inner to middle neritic.

Bulk lithology of the Sag River is approximately 14% shale, 16% limestone, and 70% sandstone.

PRE-MISSISSIPPIAN

Argillite: 2264-2300' (Total Depth)

The argillite was entered at 2264' with a change in lithology to dark gray-black, firm to hard, slightly graphitic, pyritic argillite. Finely disseminated pyrite, thin quartz lenses, and free quartz are common in the ditch cuttings.

STRUCTURE

Core No. 1, 1330-1360', which included the Torok-"Pebble Shale" contact had poorly developed partings in the shale and claystone indicating horizontal bedding with no apparent unconformity.

A Schlumberger 4-arm dipmeter was run over the interval 1500' to 2174' to aid in structural interpretation. Low dip angles ranging from 2° to 4°, trending generally north-northwest, occur from 1550' to 1740'. At the top of the Kingak Formation (1744'), which is considered to be a surface of unconformity, dip increased to a maximum of 8°, averaging 4°, with direction changing from north-northwest to north-northeast.

From 1800' to 2039', dips range from 2° to 5°, averaging 3°, with direction to the north and northeast. A sidewall core at 2032', with poorly preserved crossbedding, indicated low angle bedding on shale partings.

From 2039' to 2080', dip continues at a 3° average with direction changing from north-northeast to south-southwest. No dip information was detectable from Core No. 2, 2039-2069'. Bioturbation probably has removed all evidence of bedding in this interval.

From 2080' to 2170', dips range from 4° to 6° , averaging 5° , with orientation to the west.

A dipmeter was not run in the bottom-hole section of the well due to small hole size. Cores Nos. 3, 4, and 5 were cut over the interval 2209' to 2245'. Low angle dips of approximately 5° are present on shale partings. At 2222', poorly developed 45° foreset bedding was noted.

OIL AND GAS INDICATIONS

Torok Formation

Very slight indications of methane gas were noted from the start of logging at 100'. Total gas increased from 2 units at 845', to an average of 40 units to 900' (maximum 80 units) and contained the first occurrence of ethane. Small gas peaks were noted at 1190', 1240', 1290', and 1315' from thin sandstone stringers. These sandstones are generally light gray, fine grained, argillaceous, and hard.

No potential reservoir rock was present in the Torok Formation.

"Pebble Shale"

A gas reading of 576 units was logged at 1475' to 1480' on the mud log and appears to be associated with a thin limestone which was present in the 1470-1480' samples. Possibly some sandstone is present but was not detected in the samples. The S.P. log indicates a slight amount of porosity at 1476'. Components of the gas were: methane, 10,500 ppm; ethane, 300 ppm; and a trace of propane. A sidewall core cut at 1476' recovered claystone.

From 1587' to 1594', a light gray, fine grained sandstone stringer was cut giving a gas peak of 296 units. Dull yellow-gold sample fluorescence, giving a slow, streaming, yellow cut fluorescence, was observed. Analysis of a sidewall core at 1587' indicated an effective porosity of 23.4% and a permeability of 26 millidarcies.

At 1640' to 1643', another sandstone stringer was penetrated. A gas reading of 960 units was noted with components of 60,000 ppm methane and traces of ethane. The sandstone, light gray and very fine grained, had bright yellow sample fluorescence and an immediate yellow cut fluorescence.

Other thin sands occur at 1660' to 1662'; 1695' to 1697'; and 1710' to 1715'. These sands gave minor gas readings; however, they were more argillaceous than the preceding sands.

Kingak Formation

Gas peaks of 280 to 390 units occurred at 1940' and 1950', respectively, from thin argillaceous sandstone beds.

The Upper Barrow sandstone was entered at 1952', and below this depth, fairly continuous sandstones occur. Fourteen sidewall cores were recovered from 1952' to 2018'. Lithology of the sidewall cores was predominantly sandstone, generally light gray, very fine grained, argillaceous, poorly consolidated with silt and clay in the matrix. Tests indicate the presence of swelling clays. There was a poor gas odor, and rare dull gold fluorescence with a slight crush cut from chloroethane. Measured porosities from sidewall cores range from 18.8% at 1996' to 26.4% at 1972', with the average being 20.9%. Horizontal permeability ranging from 9.4 millidarcies at 1996' to 273 millidarcies at 1972' were noted. Water saturations are all in excess of 50%. A gas peak of 270 units was noted within this interval.

The Lower Barrow sandstone was picked by log and samples at 2018'. The sandstones become cleaner with less clay and silt content than those above, and have higher effective porosities, lower water saturations, and higher horizontal permeabilities. Porosities range from 17.4% at 2020' to 26.1% at 2034', as measured from sidewall cores. Log-derived porosity averages 21%, with water saturation calculated at 40%. Gross thickness of the pay sand is 19' with 17' of net pay.

At 2020', gas rose from a background of 100 units to a peak of 1,500 units. Gas readings remained at 1,000 units to a depth of 2039', where mud weight was raised from 10.7 ppg to 11.7 ppg prior to coring. The component breakdown of the gas was 92,000 ppm methane, 20,000 ppm ethane, with a trace of propane. Good gas odor, stain, and yellow fluorescence were present in the samples.

The interval directly beneath the porous Lower Barrow sandstone was cored from 2039' to 2069' (Core No. 2). This interval had sample fluorescence, good gas odor, and yellow cut fluorescence. Below 2069' and down to the top of the Sag River Sandstone, no hydrocarbon shows were observed.

The Lower Barrow sandstone was production tested at a calculated absolute open flow rate of 7.22 MMCFGPD. Actual gauging on 29/64" choke was 3.687 MMCFGPD. Additional test information is available in Appendix H.

Sag River Sandstone

The Sag River was encountered at 2194'. A very slight increase in gas was noted from 10 units to 20 units. Maximum gas of 200 units was recorded at 2250' in the basal portion of the Sag River. The gas was composed entirely of methane.

Cores Nos. 3, 4, and 5 (2209-2245') were generally bleeding oil and gas with good gas odor. Fractures, with good oil staining on the faces, were present in Core No. 4. Good to spotty gold fluorescence and light brown chloroethane cuts were present throughout the Sag River. At 2230' to 2233', dark brown tarry oil was present in interparticle porosity in a biocalcarenite sequence.

Drill-Stem Test No. 1 was run from the 7" casing shoe at 2161' down to 2245' in the Sag River. A 540 psi nitrogen cushion was used. One flow period of 225 minutes was used with gas to the surface in 23 minutes. Flow rate stabilized at 800 MCFGPD (estimated) through 3/4" choke. Fluid recovery consisted of gas- and very slightly (less than 1%) oil-cut emulsified drilling mud. Pressure charts indicate a low productivity depleting reservoir.

IHP	1,270 psi
IFP	331 psi
FFP	204 psi
ISIP	1,017 psi
FHP	1,220 psi
Tempera	ture 55°F

Argillite

The argillite was entered at 2264'. No hydrocarbon indications were noted from the argillite down to total depth of 2300'.

CONCLUSIONS

- 1. The complete sedimentary section was penetrated and evaluated at this location.
- 2. The "Pebble Shale" sandstone stringers appear to be gas bearing; however, clay and silt in the matrix combined with the thinness and probable discontinuity of the beds make significant production unlikely.
- 3. The well extended the East Barrow Gas Field one location to the north and proved up an additional 17' of structural advantage to the South Barrow No. 12 well.
- 4. The oil shows in the Sag River are concluded to be noncommercial residual oil. While gas was tested from the Sag River at the rate of 800 MCFGPD, the pressure charts appear to indicate a depleting low productivity reservoir.
- 5. No hydrocarbon shows were indicated in the argillite.

PERTINENT DATA AND APPENDICES

<u>Appendix</u>

Α.	Summary of Pertinent Data	A-1-2
В.	Drill Cuttings and Core Descriptions	B-1-9
c.	Log Analysis	C-1-4
D.	Core Analysis Report Report of May 3, 1978	D-1 D-2 D-3
Ε.	Drill-Stem Test Report	E-1
F.	Gas Analysis Reports Report of May 15, 1978 Report of May 15, 1978 Report of May 15, 1978 Report of May 18, 1978 Report of May 18, 1978 Report of May 18, 1978 Report of February 27, 1979 Report of February 27, 1979 Report of January 17, 1980	F-1 F-2 F-3 F-4 F-5 F-6 F-7 F-8 F-9 F-10
G.	Crude Oil Analysis Report	G-1-2
н.	Production Test No. 1	H-1-16

SUMMARY OF PERTINENT DATA *

WELL NAME:

South Barrow Well No. 19

API NO.:

50-023-20012

OPERATOR:

Husky Oil NPR Operations, Inc.

LOCATION:

1320' FEL, 1320' FSL

protracted Section 23, T22N, R17W,

Umiat Meridian, Alaska

COORDINATES:

Latitude: 71°14'29.470"N

Longitude: 156°20'01.687"W

X = 696,247.93Y = 6,306,608.67

Zone 6

ELEVATION:

7' Ground, 12' Pad, 30' Kelly Bushing

DATE SPUDDED:

April 18, 1978

TOTAL DEPTH:

2,300 feet

2,100 feet - plug-back depth

DATE REACHED

TOTAL DEPTH:

May 6, 1978

RIG RELEASED:

May 16, 1978

STATUS:

Gas Well (Suspended)

CASING:

13-3/8" @ 80' (driller)

9-5/8" @ 1491'

7" @ 2161'

LOGGING RECORD:

DIL/SP	99-1495'
DLL/SP/Caliper	1491-2173'
DLL/SP	2161-2284
BHCS/GR/TTI/Caliper	100-1497'
·	1490-2170'
	2161-2296'
FDC/CNL/GR/Caliper	1490-2176'
	2062-2294'
FDC/GR/RR/Caliper	1490-2176'
,	2062-2294'
MLL	2110-2299'
CBL/VDL/GR	1450-2081
Mudlog	80-2300'

LOGGING RECORD: (Continued)

Computed Logs:

Dipmeter Arrow Plot

Saraband

1501-2167' 1500-2260'

SIDEWALL CORES:

Run 1, Shot 30, Recovered 29

Run 2, Shot 45, Recovered 37

CONVENTIONAL CORES:

No.	<u>Depth</u>	Recovery	<u>Formation</u>
1	1330-1360'	30'	Torok & "Pebble Shale"
2	2039-20691	30'	Lower Barrow
3	2209-2217'	4'	Sag River Sandstone
4	2217-2230'	9'	Sag River Sandstone
5	2230-2245	15'	Sag River Sandstone

TESTS:

DST No. 1

2161-2245'

800 MCFGPD (estimated) and 7 gallons gas- and very slightly

oil-cut emulsified mud.

Production Test

No. 1

perf. 2018-2044'

Calculated AOF 7.22 MMCFGPD.

ANALYSIS REPORTS:

Crude Oil: Chemical & Geological Laboratories of Alaska, Inc.

Gas Analysis: U. S. Bureau of Mines

Gas Analysis: Chemical & Geological Laboratories of Alaska, Inc.

WELLSITE GEOLOGIST:

D. Young

WELL LOG ANALYST:

Armour Kane

CONTRACTOR:

Brinkerhoff Signal, Inc.

MUD LOGGERS:

Borst & Giddens Well Logging Service, Inc.

BIOSTRATIGRAPHIC

ANALYSIS:

Anderson, Warren & Associates, Inc.

* Copies and/or reproducibles of all geological data are available from:

National Oceanic and Atmospheric Administration EDIS/NGSDC (D62) 325 Broadway Boulder, CO 80303

SOUTH BARROW WELL NO. 19 DRILL CUTTINGS AND CORE DESCRIPTIONS BY: D. YOUNG

DRILLED DEPTH (FEET BELOW KELLY BUSHING)

0- 100	No recovery.
100- 220	Sandstone: light gray, fine grained, medium hard, silty, carbonaceous, calcareous, argillaceous, interbedded with Siltstone: medium gray, hard, carbonaceous, calcareous, a few pelecypod fragments.
220- 370	Sandstone: fine grained, light to medium gray, hard, calcareous, carbonaceous in part, argillaceous, a few pyritic inclusions.
370- 460	Claystone: gray, soft, sticky.
460- 490	Siltstone: light gray, argillaceous, firm, calcareous.
490- 760	Claystone: medium gray, soft, sticky, slightly silty, with interbedded siltstone and minor sandstone.
760- 820	Siltstone: dark gray, hard, calcareous.
820- 880	Claystone: as above.
880- 940	Claystone: medium gray, soft, sticky, interbedded with Sandstone: fine grained, light gray, hard, calcareous, pyritic.
940-1000	Claystone: medium gray, soft, sticky, interbedded with Siltstone: dark gray, hard, calcareous, pyritic and Sandstone: very fine grained, light gray, hard, calcareous, trace of kaolinite, trace of pelecypods.
1000-1120	Claystone: medium gray, soft, sticky, interbedded with Siltstone: dark gray, calcareous, hard, occasional pyrite, trace of kaolinite.
1120-1180	No sample returns.
1180-1210	Claystone: gray, brown, soft, lumpy, interbedded with Siltstone: dark gray, firm, pyritic, calcareous.
1210-1300	Sandstone: fine grained, hard, light gray, argillaceous, calcareous, pyritic, interbedded with siltstone and Claystone: as above.
1300-1330	Claystone: light gray, soft, sticky.

1330-1360	Core No. 1 - Cut	t 30', Recovered 30'
	1330.0-1335.0' (5.0')	Claystone: medium gray, silty, firm, blocky, faint gassy odor.
	1335.0-1338.0' (3.0')	Claystone: medium gray, silty, firm, as above.
	1338.0-1340.0' (2.0')	Claystone: medium gray, silty, firm, slightly pyritic, poor gassy odor.
	1340.0-1344.0' (4.0')	Claystone: medium to dark gray, firm, slightly silty.
	1344.0-1348.0' (4.0')	Claystone: medium to dark gray, firm, hard, slightly silty, becomes fissile, noncalcareous.
	1348.0-1350.0' (2.0')	Claystone: grading to dark gray Shale: fissile, noncalcareous, poor horizontal partings.
	1350.0-1353.0' (3.0')	Shale: dark gray, hard, fissile, pyritic inclusions, rare Gastropod imprint, probable spines.
	1353.0-1356.0' (3.0')	Shale: dark gray, fissile, hard, pyritic inclusions, slickensides common, horizontal partings.
	1356.0-1359.0' (3.0')	Shale: dark gray, hard, fissile, as above.
	1359.0-1360.0' (1.0')	Shale: as above, few pyritic inclusions, horizontal partings.
1360-1390	Shale: as above,	trace of calcite, trace of coal.
1390-1450	glauconitic, inte	ay, fissile, as above, and dark green, erbedded with Limestone: tan to pyritic, hard, tight, common frosted
1450-1500	interbedded with	soft, slightly fissile, calcareous, Limestone: tan to brown, pyritic, in large pyritohedrons, common loose rains.
1500-1570		own-gray, soft, silty, occasional pyrite wood fragments, a few loose medium

1570-1590	Sandstone: fine grained, light gray, argillaceous, silty, clear, white, brown, green, pyritic, dull yellow-gold fluorescence with slow streaming cut, yellow cut fluorescence, interbedded with Shale: as above.
1590-1640	Shale: dark brown, soft, silty, slightly pyritic, becoming micromicaceous with a few loose quartz grains.
1640-1650	Sandstone: fine grained, light gray, argillaceous, silty matrix, poorly sorted, subangular, subrounded, clear quartz, 10% dark mafics, dull gold fluorescence, immediate streaming cut, yellow cut fluorescence.
1650-1660	Shale: dark brown-gray, silty, soft, micaceous, few rounded frosted quartz grains, trace of pyrite.
1660-1670	Sandstone: fine grained, light gray, slightly argillaceous, silty matrix, clear quartz, yellow-gold fluorescence, slight cut.
1670-1680	Shale: brown-gray, soft, silty, micaceous, common free frosted quartz grains.
1680-1690	Sandstone: as above.
1690-1700	Shale: brown, soft, silty.
1700-1710	Conglomerate: pebbles of chert, quartz, and argillite, free, subrounded to well rounded, interbedded with Sandstone: fine grained, light gray, tight, hard, argillaceous, poorly sorted, and Siltstone: dark gray, argillaceous, firm.
1700-1710 1710-1720	free, subrounded to well rounded, interbedded with Sandstone: fine grained, light gray, tight, hard, argillaceous, poorly sorted, and Siltstone: dark gray,
	free, subrounded to well rounded, interbedded with Sandstone: fine grained, light gray, tight, hard, argillaceous, poorly sorted, and Siltstone: dark gray, argillaceous, firm. Limestone: brown, argillaceous, hard, tight, abundant siderite(?), orange to clear, partly euhedral, with gold fluorescence, interbedded with common coarse grained to pebble sized free quartz, chert and argillite, well
1710-1720	free, subrounded to well rounded, interbedded with Sandstone: fine grained, light gray, tight, hard, argillaceous, poorly sorted, and Siltstone: dark gray, argillaceous, firm. Limestone: brown, argillaceous, hard, tight, abundant siderite(?), orange to clear, partly euhedral, with gold fluorescence, interbedded with common coarse grained to pebble sized free quartz, chert and argillite, well rounded. Shale: brown, soft, highly sandy, abundant loose,

1850-1890	Siltstone: light gray, argillaceous, soft, gradational with Claystone: soft, silty, micromicaceous.
1890-1910	Claystone: brown, soft, micaceous.
1910-1920	Claystone: as above, interbedded with Siltstone: gray, argillaceous, firm.
1920-1930	Siltstone: dark gray, firm, pyrite inclusions with Limestone stringers: brown, hard, dense.
1930-1940	Claystone: gray, soft, silty.
1940-1950	Siltstone: light gray, soft, highly argillaceous, grading to very fine grained, highly argillaceous sandstone.
1950-1970	Sandstone: very fine grained, light gray-tan, glauconitic, hard, argillaceous, pyritic, fossil wood with interbedded Siltstone: brown, soft, highly argillaceous, highly sandy, slightly calcareous.
1970-1980	Sandstone: very fine grained, light gray, tan, friable, silty matrix, micaceous, slightly argillaceous, glauconitic, no odor, stain, or fluorescence.
1980-1990	Sandstone: very fine grained, light gray, tan, silty, argillaceous, friable, clay matrix, common fossil wood and lignite, glauconite, clear, white, green quartz, a few orange pebbles.
1990-2000	Sandstone: as above, very slight gas odor, poor yellow crush cut, yellow cut fluorescence.
2000-2020	Sandstone: very fine grained, light gray, silty matrix, slightly argillaceous, fossilized wood, slight odor of gas, dull gold fluorescence, slight crushed cut, yellow cut fluorescence, in part tan, hard, slightly calcareous.
2020-2030	Sandstone: very fine to fine grained, clean, clear, very friable, loose grained, subrounded to rounded, well sorted, quartzose, clear, white, 5% dark green, gold fluorescence, 100% yellow cut fluorescence.
2030-2039	Sandstone: very fine grained, light gray, tan, friable, clean, clear, trace of light green quartz, large dark green glauconite, abundant loose sand grains, gold fluorescence, slight stain, slight yellow cut, in part clay filled matrix.

2039-2069	Core	No.	2	-	Cut	30',	Recovered	30'
			_			,		

2039.0-2042.0' (3.0')	Sandstone: fine grained, tan, firm, friable, slightly silty, clay in matrix, swells on test with fresh water, clear quartz, well sorted, subrounded to rounded, bright yellow, mottled fluorescence, immediate yellow cut, yellow cut fluorescence.
2042.0-2045.0' (3.0')	Sandstone: fine grained, tan, silty, swelling clay in matrix, friable, glauconite, as above, lignite, pelecypod, megafossils.
2045.0-2047.0' (2.0')	Sandstone: fine grained, tan to light gray, silty clay in matrix, calcareous.
2047.0-2047.2' (0.2')	Sandstone: fine grained, tan to light gray, argillaceous, clear, hard; Siltstone: argillaceous, hard, sandy, calcareous, yellow fluorescence, good cut.
2047.2-2048.0' (0.8')	Siltstone: argillaceous, hard, sandy, calcareous, yellow fluorescence, good cut.
2048.0-2049.0' (1.0')	Siltstone: firm, medium gray, highly argillaceous, shell bed, small pelecypod, lignite.
2049.0-2051.5' (2.5')	Siltstone: dark gray, firm, sandy, pyritic, bioturbation.
2051.5-2054.0' (2.5')	Sandstone: very fine grained, tan to gray, argillaceous, silty, firm, poorly friable, spotty fluorescence, yellow cut.
2054.0-2056.0' (2.0')	Sandtone: very fine, gray, tan, light gray, silty, argillaceous, calcareous, pyritic.
2056.0-2058.1' (2.1')	Siltstone: dark gray, sandy, calcareous, yellow spotty fluorescence, good odor, fair yellow cut fluorescence, large fossil wood fragment, 5" x 2".

	2058.1-2059.0' (0.9')	Sandstone: very fine grained, highly argillaceous, silty, clay pods.
	2059.0-2060.0' (1.0')	Sandstone: as above.
	2060.0-2061.0' (1.0')	Sandstone: as above, highly argillaceous, silty, good odor.
	2061.0-2062.0' (1.0')	Sandstone: light gray, very hard, siliceous, pyritized fossil wood.
	2062.0-2063.0' (1.0')	Sandstone: very fine grained, light gray, partly clean and fine grained, good odor, yellow fluorescence, yellow cut fluorescence.
	2063.0-2066.0' (3.0')	Sandstone: light gray, very fine grained, hard, argillaceous, calcareous.
	2066.0-2069.0' (3.0')	Sandstone: light gray to brown, very fine grained, hard, argillaceous, silty, slightly friable, spotty yellow fluorescence, good gassy odor.
2069-2080	argillaceous, few	t gray, very fine grained, slightly pyritic inclusions, clay matrix swells, of dark gray, firm, slightly sandy
2080-2110	Sandstone: ligh	gray, firm, sandy, interbedded with t gray to tan, hard, tight, highly Shale: gray, slightly fissile, firm.
2110-2140	slightly calcareou	gray, firm, slightly sandy, micaceous, us, with thin stringers of Sandstone: tan, hard, partly friable, clear, rtzose.
2140-2170	Claystone: light	gray, soft, highly sandy.
2170-2175	subrounded to	to light gray, fine grained, hard, rounded, clear, white quartz, bedded with Claystone: as above.
2175-2180	Siltstone: medi carbonaceous, mi	um gray, firm, calcareous, slightly cromicaceous.

2180-2185	light gray,	um to coarse grained, angular quartz, argillaceous, calcareous, slightly tstone: as above.
2185-2190	Siltstone, as at gold fluorescence	2175', trace of brown oil stain with
2190-2195		hard, sandy, slightly glauconitic, rescence, very slight cut.
2195-2205	calcareous, a fe quartz grains as	grained, brown to tan, argillaceous, ew coarse grained pebbles, rounded floaters with thin bed of Claystone: abundant gilsonite.
2205-2209	slightly argillace subrounded, clea	grained, tan to brown, light gray, ous, hard, tight, common glauconite, ar quartz, a few quartz pebbles, 10% , gold cut fluorescence.
2209-2217	Core No. 3 - Cu	t 8', Recovered 4'
	2209.0-2209.7' (0.7')	Shale: dark gray, very hard, carbonaceous, slightly silty.
	2209.7-2211.0' (1.3')	Sandstone: very fine to fine grained, brown, firm to slightly friable, highly glauconitic, subrounded to well rounded quartz, good brown oil stain, tea cut, 100% gold fluorescence, shell fragments of pelecypod and echinoid.
	2211.0-2212.0' (1.0')	Sandstone: very fine grained, brown, very friable, glauconite, quartz, as above, poorly consolidated, silty matrix, good brown oil stain, fluorescence cut, bleeding oil, in part good visible porosity.
	2212.0-2213.0' (1.0')	Sandstone: very fine grained, brown to gray, friable, glauconite, highly argillaceous, clay in matrix.
	2213.0-2217.0' (4.0')	No recovery.
2217-2230	Core No. 4 - Cu	t 13', Recovered 9'
	2217.0-2219.3' (2.3')	Sandstone: very fine grained, brown, clean, highly glauconitic,

thin beds, well sorted, well rounded quartz, few pelecypod shell fragments, slightly calcareous.

2219.3-2220.2' (0.9') Limestone: brown to tan, firm, biocalcarenitic, sandy, highly glauconitic beds, calcareous.

2220.2-2222.0' (1.8') Sandstone: brown, very fine grained, firm, glauconitic.

2222.0-2223.0' (1.0')

Sandstone: very fine grained, brown, poorly consolidated, argillaceous, clear, friable, well rounded, well sorted quartz, glauconitic, heavy oil stain, 45° bedding planes, vertical fractures and fractures at right angles to bedding planes possibly induced, closed to slightly open good stain on faces, no mineralization.

2223.0-2225.0' (2.0') Sandstone: as above at 2220.2', highly calcareous, increase in fossils with pelecypod and echinoid plates.

2225.0-2226.0' (1.0') Sandstone: very fine grained, brown, friable, highly calcareous, highly glauconitic, pelecypods and echinoids, clean, clear, well rounded quartz.

2226.0-2230.0' (4.0') No recovery.

2230-2245

Core No. 5 - Cut 15', Recovered 15'

2230.0-2231.2' (1.2')

Limestone: white, tan-brown, hard, fossils, glauconitic, sandy, spotty oil stain, gold fluorescence 100%, scattered, dense, black tar blebs. pelecypod and echinoid fragments, thin shale and sandstone partings; Shale: dark gray-brown, gold spores, Sandstone: very fine stringers, grained, friable, firm, brown, glauconitic, heavy oil stain, tea cut.

2231.2-2232.8' (1.6') Limestone: biocalcarenite, white, clear, tan, green, large shell fragments, common pelecypod,

		•
		echinoid plates, large glauconitic pellets, soft amorphous, few small argillaceous pebbles, dark brown, high visible crude in pockets of porosity, good odor, spotty stain.
	2232.8-2236.0' (3.2')	Sandstone: very fine grained, brown, calcareous, hard, good odor and oil stain, slightly friable, scattered shell fragments, bleeding oil and gas.
	2236.0-2238.0' (2.0')	Sandstone: as above, very hard, siliceous, good fluorescence, poor stain.
	2238.0-2240.0' (2.0')	Sandstone: very fine grained, brown, calcareous, hard, low porosity, poor permeability, 100% gold fluorescence, tea cut, pelecypod, brachiopod, scattered shells.
	2240.0-2243.0' (3.0')	Sandstone: very fine grained, brown, well sorted, well rounded, slightly friable, calcareous, shell fragments, rare glauconite, slightly argillaceous, good odor, stain cut fluorescence, bleeding oil and gas.
	2243.0-2245.0' (2.0')	Sandstone: as above, increasingly argillaceous.
2245-2250	Sandstone: very calcareous, argilla	y fine grained, light gray, firm, aceous.
2250-2260	Claystone: me Sandstone: as ab	
2260-2280	Argillite: dark g flaky,	ray to black, firm, slightly graphitic,
2280-2290	Argillite: mediu pyritic, common lenses and fractu	m to dark gray, firm, graphitic, clear, broken quartz, probably as re fillings.
2290-2300	in part mottled,	gray, firm, graphitic, poorly foliated, light gray, quartzose, common free bove; no odor, stain, cut, or rved.
2,300 feet Total De	oth	

ARMOUR KANE

Formation Evaluation

Well Log Analyst 18360-6 Cantara St Reseda. Ca. 91335 (213) 993-0586 May 12, 1978

Mr. Gordon W. Legz Husky Oil/MFR Operations, Inc. 2525 C Street, Suite 400 Anchorage, Alaska 99503

Dear Mr. Legg:

Logging operations on <u>South Barrow #19</u> were begun by Schlumberger at 1300 hours April 30, 1978 and completed at 0400 hours May 1. Logs run wers Dual Laterolog, Neutron-Density, Sonic, Dipmeter and sidewall cores. The DLL had to be run twice due to SP trouble, the Neutron-Density had to be run twice due to "spikes" on the neutron curve, the caliper was inoperative on the sonic log and their sepia print paper was too old to print. In my opinion, these problems and those on other wells show a disturbing lack of preventative maintenance on Schlumberger's part.

Log tops were: Kingak, 1714; Upper Barrow Sand, 1965; Lower Barrow Sand, 2018. The Upper Barrow appears quite shalp and of low permeability while the Lower Barrow indicates an average porosity of 22%, an average water saturation of 40% and invasion diameter of 30-35 inches. It should produce gas with some water cut.

The final logging run was commenced at 1300 hours May 6 and was completed at about 2300 hours May 7, 1978. Trouble was encountered with the DLL resulting in some 6 hours of lost rig time, the Neutron-Density and Sonic logs were run successfully, one more try with the DLL was a failure and the Microlaterolog failed to reach bottom. A cleanout run was made and after replacement equipment was flown in the DLL was completed. However, the field printer broke down so field prints of the DLL and MLL could not be obtained. Again, a maintenance problem.

The Sag River Sand was topped at 2194 and Argillite at 2264. Sag River porosity averaged 15% and water saturation 48%. Here, again, Rw values were 0.12 to 0.13, or about 50,000 ppm as in Barrow #17 compared to measured values of produced water in #17 of .45 to .49. A check of Barrow #12, drilled with fresh mud, resulted in a computed Rw of 0.5 and average porosity of 23% and water saturation of 48%, which compares favorably with the figures from Barrow #17 and #19. True resistivity in #12 was from 30 to 38 ohm-meters and in #19 from 13 to 20 ohms. This is a problem difficult to resolve but it would appear that log interpretation can be relied upon as borne out by well performance in #17.

Very truly yours,

Armour Kane

Log Analysis

			,							1			
Husi	w O	14/N	PR O	PERA	TIONS,	INC.					DOUTH BE	erow H	19
سر ها	١.	BARR		684			LOPE			-	AL ASK	A	
DEPTH	Rr	Ø,	ØN	ΔT	Ø5	* Ox	Øс	Siw	DL				REMARKS
018-20		21	24	100	30	15	2/	46	30"				
020-22		27	21	105	3.3	23.7	25	38	30"				
22-26	18	27	2/	108	36	25.2	25	33	32"				
26-30	20	15	27	102	32	Z2.4	15	52	33 1				
030-34	18	24	23	108	36	25.2	25	33	33*				
34-36	18	22	25	110	, 	259		37	354		}		
		<u> </u>			Au.	Ø =	22 %		<u> </u>		<u>.</u>	<u> </u>	
						Av.	ξω =	40%	<u> </u>		<u> </u>		
	<u> </u>						1						
						1							
RHF =	,012	061	BH	T EST	=70	RMP	@70°	.06	1				
RMF0 1		1	ŧ	030 =	1	1							
RMF.	,42	Ruz	 01	5-	<u>e</u>	ا 0./کـــ [:]	690	e pp.m					
													· ·
* 9	<u>5. C</u>	ORREC	TEO	FOE	GAS E	FFECT	BY	RUL	FOF	HUHB.	FIGURE	080	. 1
	ļ	<u> </u>						ļ					<u></u>
	ļ				<u> </u>			<u> </u>					
	<u> </u>	ļ					ļ						
													
	<u> </u>												

Log Analysis

)	Husk	y 01	م در/ر	R O PI	TRATIO	NS. /1	/C.			3	. Bn	RRO	w #	19
ک	O. BA	RROW		504		TH 54				A	L A SK	A	•	
DEPTH	RT	Ø,	Ox	ST	Ø5	50			* باک			Į		REMARKS
2198	20	18	29	100	30	45			83					
202-10	26	16	27	90	Z 4	44			82			ļ		ļ
210-16	23	16	31	98	z g	47			87					
223-26	25	17	31	93	25	42			79				<u> </u>	
726-30	40	10	26	87	22	57			106		 			
234-44	25	15	27	85	20	48			89		<u>}</u>			<u> </u>
248-52	25	13	27	85	20	55			/03		<u> </u> 			
	Av. Ø	: 15%		Fi	v, 50	= 48%		-			1			
* 1F	٠,,,,,,	11.11.1		1144		e.	E 1 1	- 40		O O OL	17 . (// <		<u> </u>
<u> </u>	<i>(H=</i>	MEN.	UKEB	V #2.02		100 2	(F 01 T V	, ,,,,	 	K // 00	1, 73	00		
									<u> </u>					
	<u> </u> 		1	<u> </u>	<u> </u> 	<u> </u>				<u> </u>			 	
Rmf=	1080	15°		ء مح	+18	MV@	244		<u> </u>	! 	<u> </u>			
Rmfe=	1								ļ					
Rmfe	1													
Rue														
Rwe:	0.11	Rw=	0.13										<u> </u>	
		<u></u>		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			1
	<u> </u>					<u> </u>								
														<u> </u>

Log Analysis

ORFART													
	1USK	y OIL	/ N P R	OPER	ATION	15, /NC				UTA	SOUTH BAK	CROW #	11
500	TH B.	ARROW				NORTI	1 54	PF		A	LASKA		
DEPTH	R-	Ø _s	Ø.	C 4 ₹ /10 △ T	Øs	Øs.	φ.	ري		Øx FT	SuxFT.		REMARKS
2018-20	13	Ž]	z 4	100	30	21	21	46		42	92		<u> </u>
2020-22	15	27	21	105	33	23.1	25	38		50	76		
022-26	18	27	2/	108	34	25.2	25	33	. <u>.</u>	100	122	<u> </u>	
024-30	20	15	27	102	32	22.4	15-	52		60	208		-
0:0-3+	18	26	23	108	36	25.2	25	33		100	12.2		<u> </u>
024.26	18	22	25	110	37	25.9	22	37	ļ	44	7.4		- <u>-</u>
									<u> </u>	296	214		
								A,	d =	22	40%		<u> </u>
				<u> </u>				ļ	ļ	ļ			
			ļ <u>.</u>			<u>L</u> .		<u> </u>					
	Øs	COLR	CT ED	FOR G	95 EF	ear B	1, "R	RE OF	THOME "	FIGU	W OF 0.7		
						<u> </u>							
					<u> </u>			<u> </u>					<u> </u>
				i .			Γ^-	 					
			1				1						
		1	\								1		
		1			1	1-		1			1		
		+	†	 		 		1	†		<u> </u>		·· ····
		 		+			 	1	 	+	 		
	\vdash	-	-	+	 	+	 	 	1	┼┈─			
			1		1	<u> </u>	1		1			<u> </u>	

RMF=,012 @ 61° ESTMOTED BHT , 10° 25 AV. RMF@ 10°=,063 RME=,036 SP@ 2030= + 25 AV. RMF@ 1,42 RWE=,085 RW=,12 = 60,000 ppm RWE

CHEMICAL & GEOLOGICAL LABORATORIES OF ALASKA, INC. TELEPHONE (907) 279-4014 P.O. BOX 4-1276 4649 Business Park Blvd.

ANCHORAGE, ALASKA 99509

CORE ANALYSIS REPORT

Ç-0	rtek racrurg	LEGEND 3-3 sht 5tState NFNo Fracture V-Vertical V-Ver
County	Alaska	Drilling Fluid
Field		Depths Core No. 2 (2039-2069)
	NPR No. 4	Formation
Well No	South Barrow No. 19	Location
Сотрепу	Husky Oil Company	Data May 3, 1978 Lab. No. 7818

		· · · · · · · · · · · · · · · · · · ·	EFFECTIVE	PERMI			ATIONS	EOWNATE	10LU	BILITY
***	LEGENE	DEPTH, FEST	PERCENT	HORIZONTAL	YERTICAL	S FORE SPACE	% PORE SPACE	WATER WATER	HUB	18 %
			-	MONITOWIAL	TEATILAL	1	10720 41142		ACID	3510
1.		2039-40	14.1	3.35	2.13	Trace	69.4			
2.		2040-41	18.9	61	6.88	5.6	68.2			
			22.2		67	5.4	58.0			
3.		2041-42		83	I	1				
4.		2042-43	2.0	5.75	4.40	1.9	80.2			
5.	HF	2043-44	8.6	91	7.31	2.1	81.7			1
6.		2044-45	13.9	14	8.55	7.1	50.0			
7.		2045-46	16.9	8.91	10	Trace	57.9			ļ
8. 1		2046-47	14.3	24	20	Trace	60.6			
9.		2047-48	14.3	2.30	0.84	Trace	57.4			
ő.		2048-49	13.7	2.06	2.00	Trace	69.7			
ا ۳۰		2040-49	13.7	2.00	2.00	liace	09.7			:
1.		2049-50	14.8	1.27	0.63	Trace	58.6			
2. [2050-51	13.6	2.12	1.07	Trace	62.1			1
3.		2051-52	17.7	5.56	2.26	1.4	62.8			1
4.		2052-53	19.9	12	1.37	1.2	53.6			
5.		2053-54	24.9	4.67	1.55	2.0	56.4			
٦.		2033-34	[24.7	4.07	1.33	2.0	30.4			
6.		2054-55	16.4	3.43	1.60	4.5	66.4			
17. l	į	2055-56	18.4	9.91	1.69	2.7	58.3	1		1
8.		2056-57	20.0	11	4.19	2.5	58.9	1		ſ
9.		2057-58	12.6	5.64	3.03	3.1	71.1			
20.		2058-59	11.6	9.38	4.12	Trace	76.0			
21.		2059-60	18.0	15	10	1.3	62.9			ĺ
22.		2060-61	20.8	11	1.94	2.4	51.3			
23.		2061-62	11.1	9.59	0.36	Trace	60.4	1		
24.		2062-63	17.1	4.40	2.49	Trace	59.8			l
25.	HF	2063-64	14.1	40	0.51	Trace	60.1			
6.		2064-65	15.0	6.34	0.42	4.9	59.3			
7.		2065-66	12.6	3.52	1.18	Trace	62.8	1		
8.		2065-67	14.1		0.51	5.1	67.7	1		
				5.96	,		I E			!
29.		2067-68	16.6	1.91	1.19	5.9	61.5	İ		j
30.		2068-69	16.0	6.69	3.23	6.1	59.6			1
Į			į į		į			-		
- 1		!	1				[
ì					1		!	ĺ		
					1		[i		
			\		i					
ļ		\			i			ļ		
ı		1	1 1		I	I	1 }			ı

CHEMICAL & GEOLOGICAL LABORATORIES OF ALASKA, INC.

TELEPHONE (907) 279-4014

P O. BOX 4-1276

4649 Business Park Bl.

ANCHORAGE, ALASKA 99509

CORE ANALYSIS REPORT

Company	Husky Oil Company	DateMay 8, 1978	Lab. No. 7856
Well No.	South Barrow No. 19	Location	
Field	NPR #4	Formation	
County		Depths	
State	Alaska	Drilling Fluid	· · · · · · · · · · · · · · · · · · ·
	C—Crack P—Frecura H—Horizgatal	LEGEND NF-Ne Fracture	S—Slighe St—Stain V—Vertical
	Q—Open	15Iraulficient Sample	VeVuge

			LFFECTIVE	PERMI	ABILITY		AT10#8	CONNAIL	#0LUBILITY	
HO.	LEGEND	DEPTH. PEET	PERCENT	HORLIGHTAL	VERTICAL	PORE SPACE	TOTAL WATER	WATER	HUB '	10 %
\dashv					i					· · · · · ·
				•		İ	!			ĺ
				<u>SIS</u>	DEMALL CO	RES				
]		į				
1.		1587	23.4	26			-			
2.		1636	-]		Trace	63.6			
3.		1960	20.5	33						
4.		1964				Trace	55.3			
5.		1972	26.4	273						
اہ		,,,,,				,,	54.6			
6.		1976	10.2	10		1.1	34.0			
7.		1980	19.2	18		1.3	58.8			
8.		1984	21.7	20		1.3	30.0			İ
.9.		1988 1992	21.3	20		Trace	60.1			
10.		1992				11 ace	00.1			
11.		199 6	18.8	9.44			_ _	•		
12.		2000	10.0			Trace	55.6			
13.		2004	20.6	28						
14.		2014				Trace	52.1			
15.		2016	19.3	17						
'"		10,0	, , , , ,	''		İ	! .			
16.		2018				1.6	40.9			
17.		2020	17.4	14			·]			
18.		2022				1.0	42.2			
19.		2024	25.6	58			(
20.		2026	-			Trace	40.3			
]							
21.		2028	23.0	43			;			
22.		2032				Trace	41.7			
23.		2034	26.1	26						
24.		2036		- -		Trace	48.3			
- 1							:			
]			05 5007			1 11550 50	l	ATUG AT 7.04		
иоты	ES: AV	RAGE POROSITY	0F F001	AGE ABOVE	AND REFO	M OZED LO	K ELOTO S	HIUKALIU	12.	
- 1				1		!	li			ļ
							į l			
		1	•				}			
]	1						
		1								
			1	ĺ			; i			

CHEMICAL & _EOLOGICAL LABORATO .ES OF ALASKA, INC.

TELEPHONE (907) 279-4014

P.O. BOX 4-1276

4649 Business Park Blvd.

ANCHORAGE, ALASKA 99509

CORE ANALYSIS REPORT

Company	Husky Oil Company South Barrow No. 19	Date May 10, 1978	Lab. No. 7882		
Well No	NPR #4	Formation			
County	<u>.</u>	Depths 2230-2245 (Core No. 5)			
State	Alaska	Drilling Fluid			
Γ	C—Greek F—Fracture	LEGEND	SSlight		
	H—Horispatel	NF-No Fracture	St—Stele V—Vertical V—-Vuga		
1	0Open	IS-Insufficient Sumple			

EAMPLE NO.	<u>.</u>	DEPTH, PRET	EFFECTIVE POROSITY	PERM	PERMANULITY MILLIBARCIES		\$47U#4710##		BOLUBICITY	
	i,farme		PERCENT	HORIZONTAL	VERTICAL.	# PORE SPECE	TOTAL WATER	CORMATE WATER	ACI ©	18 % 4010
1.		2230-31	9.1	9.31	0.62	Trace	44.0			
2.		2231 - 32	16.9	977	712	8.6	52.9			{
3.		2232-33	11.7	17.3	2.40	Trace	50.9			ł
4.		2233-34	15.0	9.13	38.4	Trace	50.0			
5.		2234-35	18.6	19.7	7.28	Trace	55.5			
6.		2235-36	14.7	9.13	7.77	1.8	50.2			
7.		2236-37	13.7	7.18	8.68	3.8	48.7			
8. i		2237-38	15.9	15.6	8.31	Trace	47.9			
9.		2238-39	16.3	7.35	4.16	Trace	54.1		-	
10.		2239-40	13.3	4.38	0.13	3.9	58.4		-	
11.		2240-41	17.1	38.0	11.8	3.0	53.4			
12.		2241-42	15.1	16.5	12.7	0.9	55.6		1	
13.		2242-43	17.4	16.4	9.04	Trace	50.5	'	1	
14.		2243-44	22.1	82.8	24.8	1.2	48.1			
15.		2244-45	20.2	29.2	13.8	1.3	47.5	:		
''''		2217-73	1	-3	'**	'''	,,,,,			
I			į		1					
- 1				1					-	
:				1	:	1]		1	
				1		1	.			
				İ					İ	
- 1]				
- 1				ĺ			Į I		İ	
- 1				}		1	<u> </u>			
ļ										
- 1										
										ļ
]	1
									Į	
		I	- 1	ł	I	1	1		1	1

HUSKY OIL NPR OPERATIONS, INC. U.S. GEOLOGICAL SURVEY/ONPRA

DRILL STEM TEST REPORT FORM

	w	ELL NAME	SOUTH BARROW NO	. 19
Test Numbe	r1	Hole Size	5 5/8" rathole	7" casing
Date5/	/5/78	Drill Pipe (Siz	e & Lgth)	
Test Interva	2161-2245* Sag River Top Sag River (2200	Drill Collars (Size & Lgth)	
Total Depth	22/15/	Type of Cushi	on FluidNitroger	ı gas
		Amount of Cu	ishion 540 ps	i Nitrogen cushion
TEST DATA	7			
1.	Tool open at 0607	hours.		
2.	Initial open period 22	mins.		
3. 4.	THE CHAPTER OF PARTY OF THE PAR	run mins.		
5.		TUD _:		:
6.		lopen period	Open tool- bled :	nitrogen cushion 540 psi nd to surf. 0618 20 psi
	dedr. to 0 per corr	OTE 0420 57 TO	4. 0800 67 mei e	tabilized on \$2764 choke;
7.		72" CDK.+ UYAU 1	A DET RESO. OR N.	T CHIR.
8.	G.T.S. 23 mins:	• 29/64. O.T.S. 3/4	mins;	Bottom hole choke size 3/4"
9.	Flow Rate: Gas 800 M	(estd) C.F.P.D.	Dil I	B.P.H. G.O.R
10.	Litavity At List		iravity of (hi	
11.	Total fluid recovery:	7 gal. From Co	Liar below circul	ating valve and 1 pint ghtly oil cut emulsified mud
12.				70.000 ppg P.P.M.
	Depth of top press bomb	2111 j	ottom Bomb 22	16
PRESSURE	Depth Depth	packer 2129		
Тор	Bomb: No. 7581 24 h LH.P. 1224 LS.I.P. 333 F.F.P. 179 F.S.I.P. 1199 Temp. 55		125 125	
SAMPLE C	HAMBER DATA			
1. 2. 3. 4. 5.	Gas C.F. Oil C.C. H ₂ O C.C. Mud C.C. B.O.R F	S. & W	 %	
	saure bottles were fill			
				lled with fluid recovery.
				ation indicates a tight
	ctivity reservoir based			<u> </u>
	ed sub contained primar mud was also recovered.		si,approx. 1 pint	or gas and v. sli.

D. B. Young

CHEMICAL & GEOLOGICAL LABORATORIES OF ALASKA, INC.

TELEPHONE (907) 279-4014

P.O.BOX 4-1276 ANCHORAGE, ALASKA 99509

4649 BUSINESS PARK BLVO.

GAS ANALYSIS REPORT

	GAS ANAL	43 ANALISIS REPORT			
Company	Husky Oil Company	Date	May 15, 1978	Lab. No.	7868-1
Weil No.	South Barrow No. 19	_Location_			
Field		_Formation	Sag River		
County		_Depth	DST No. 1 (2161-2245)	
State	Alaska	_Sampling	point Choke Mai	nifold	
Line pressure_	65		F; Container nu	mber.	
Remarks	Sample No. 1. One hour sample in pa	art dril	ling mud, 5-5-7	8.	
	Component		Mole % or Volume %		
	_		0		
	Oxygen		5 05		
	Nitrogen		·····		
	Carbon dioxide				
	Hydrogen sulfide		· · · · · · · · · · · · · · · · · · ·		
			91.47	.	
	Mathane			Gallons	
	Ethane		A 00	per MCF 0.055	
	Propane			0.010	
	Iso-butane			0.010	
	N-butane		<u>0.08</u>		
	Iso-pentane		0.03	<u> 0.011</u> 0.011	
	N-peniane,		0.04	0.016	
	Hexanes & higher	· · · · · · · ·	0.03	0.014	
	Hebennes & Higher	• • • • • • • •			
		• • • • • • • •	100.00	0.142	
	Total		100.00	0.142	
	GPM of pentanes & higher fraction,		<u>0</u>	. 052	
	6.000		967		
	Gross blu cu. ft. @60° F. & 14.7 psia (dry basis	5)		.596	
	Specific gravity (calculated from analysis)	• • • • • • •		.598	
	Specific gravity (measured)	• • • • • • •	· · · · · · · · · · · · · · · · · · ·	.530	
	Remarks:				
			 ·		
		 -			

TELEPHONE (907) 279-4014

Husky 011 Company South Barrow No. 19 P.O.BOX 4- 1276 ANCHORAGE, ALASKA 99509 4649 BUSINESS PARK BLVO.

GAS ANALYSIS REPORT

Date_

May 15, 1978

pressure. arks	psig: Sample pressure 39 psi Sample No. 2, 3 hour 20 min.	g; Temperature Sample, 5-5-78	F; Container nun	nber
	Component		Mole % or Valume %	
	Oxygen Nitrogen Carbon dioxide Hydrogen sulfide		0.17	
	Methane. Ethane Propane		91.44 1.58 0.23	Gailons per MCI 0.063 0.013
	Iso-butane N-butane iso-peniane N-peniane		0.13 0.04 0.08	0.015 0.015 0.029
	Heptanes & higher	Tatel	0.04	0.200
	GPM of pentanes & higher fraction,			0.065
	Gross btu cu. ft. @60° F. & 14.7 psia Specific gravity (calculated from analy		<u> </u>). 598). 600

TELEPHONE (907) 279-4014

P.O.BOX 4-1276 ANCHORAGE, ALASKA 99509 4649 BUSINESS PARK BLVD.

mpany	Husky Oil Company	Date May 15, 1978 Leb. No. 7863-3
eli No.	South Barrow No. 19	location
ld	NPR #4	Formation Sag River
voty		DepthDST_No1 (2161-2245)
1 0	Alaska	Sampling point Choke Manifold
e pressure. narks	Sample No. 3, 3 hour 20 mi	psig; Temperature* F; Container number n. sample, 5-5-78
e pressure merks	psig: Sample pressure 39 Sample No. 3, 3 hour 20 mi	psig; Temperature* F; Container number In . sample, 5-5-78
e pressure nerks	psig: Sample pressure 39 Sample No. 3, 3 hour 20 mi	psig; Temperature* F; Container number n. sample, 5-5-78

Component	Moie % or Valume %	
Oxygen	6.23	
Methane. Ethane. Propane. Iso-butane N-butane Iso-pentane. N-pentane. Hexanes. Heptanes & higher	91.45 1.52 0.22 0.04 0.13 0.05 0.08 0.05 0.05	Gallons per MCF 0.060 0.013 0.041 0.018 0.029 0.021 0.023
	100.00	0.205
GPM of pentanes & higher fraction,	0.	.091
Gross blu cu. ft. @60° F. & 14.7 psia (dry basis),		.599 .600
Remarks:		

Company_ Well No._

Field_

CHEMICAL & GEOLOGICAL LABORATORIES OF ALASKA, INC.

TELEPHONE (907) 279~ 4014

Husky Oil Company South Barrow No. 19

NPR #4

P.O.BOX 4-1276 ANCHORAGE, ALASKA 99509 4649 BUSINESS PARK BLVD.

Lab. No. 7936-1

GAS ANALYSIS REPORT

Location

Formation_

Date May 18, 1978

Barrow Sand

Field	NPR #4		Barrow Sand	
County	N. and an analysis of the state		2018-44	
tate	Alaska 260 au	Sampling point	<u>Separator</u>	
Line pressur	repsig; Sample pressure200 psi Sample No. 1 taken 5-12-78	g; Temperature <u>84</u> °	F; Container nun	nber
Remarks	Sample No. 1 Caken 5-12-76			
				
			Mole % or	
	Component		Valume %	
	•		_	
	Oxygen		. 0	
	Nitrogen			
	Carbon dioxide		0.06_	
	Hydrogen sulfide			
	Methane.,			Gallons
	Ethane		0.35	per MCF
	Propane		0.08	0.022
	Iso-butane		0.01	0.003
	N-butane		0.06	0.022
	Iso-pentane		0.01	0.004
	N-pentane, Hexanes & Higher	• • • • • • • • • • • • • • • • • • • •		0.004
		Total	100.00	0.086
				004
	GPM of penianes & higher fraction, , ,		0.	026
			900	
	Gross blu cu. ft. @60° F. & 14.7 psia	(dry basis)		608
	Specific gravity (calculated from analy	315),		610
	Specific gravity (measured)	• • • • • • • • • • • • • • • • • • • •		0.0
	Remarks:			

TELEPHONE (907) 279-4014

Company Husky Oil Company

P.O.BOX 4-1276 ANCHORAGE, ALASKA 99509

4649 BUSINESS PARK BLVO.

Lab. No. 7935-2

GAS ANALYSIS REPORT

Date__

May 18, 1978

Vell No		location		18
eld	NPR #4	Formation	Barrow Sand	
ounty	**A1	Depth	2018-44	
ale	Alaska	Sampling po	_{int} Separator	
	urepsig; Sample pressure260_p	sig; Temperature <u>84</u>	_° F; Container nu	mber
emarks	Sample No. 2 taken 5-12-78			
				
		 	··	
			Mole % or	
	Component		Volume %	
	•			
	Oxygen		0	
	Nitrogen		11.60	
	Carbon dioxide		0.06	
	Hydrogen sulfide			
	Methane		87.76	Gallona
	Ethane		0.33	per MCF
	Propane		0.07	0.019
	Iso-butane		0.01	0.003
	N-butane			0.031
	Iso-pentane,			0.022
	N-pentane.		0.01	0.004
		• • • • • • • • • • • • • • • • • • • •		0.004_
				·
		Total		0.079
	·			
			_	
	GPM of pentanes & higher fraction.	• • • • • • • • • • • • • • • • • • • •	<u> </u>	.026
	Gross blu cu. ft. @60° F. & 14.7 psi	a (dec basis)	900	ı
	Specific gravity (calculated from anal	e (ai à masis)' ' ' ' ' ' ' '	·····	.607
	Specific gravity (measured) ,	Y 3/3/	····· —— <u>~</u>	.608
	abasing Brazil's fundamental's 1111	• • • • • • • • • • • • • • • • • • • •	·····	
	Remarks:	<u></u>		

TELEPHONE (907) 279-4014

P.O.BOX 4- 1276 ANCHORAGE, ALASKA 99509 4649 BUSINESS PARK BLVD.

Company_	Husky Oil Company	Date May 18, 1978	Lab. No	7936-3
Well No	South Barrow No. 19	Location		
Field	11PR #4	Formation Barrow Sand		
County		Depth 2018-44		
State	Alaska	Sampling point Separator (F	ourth Rate)	
tine pressu	psig: Sample pressure 270 Sample No. 3 taken 5-13-78	_psig; Temperature75° F; Container numbe		
Remarks	Sample No. 3 taken 5-13-/8			
		<u> </u>		
		· · ·		
	 		· -	
		Mole % or		
	Component	Volume %		
	_	0		
	Oxygen	**********		
	•			
	Carbon dioxide			
	Hydrogen sulfide			
	Methane.		Gailons	
	Ethane	0.22	per MCF	
	Propane		0.014	
	Iso-butane		0.007	
	N-butane		0.028	
	Iso-pentane,		0.018	
	N-pentane		0.004	
	_			
		Total 100.00	0.071	
			<u> </u>	
	GPM of pentanes & higher fraction	0.02	2	
	Combon & Grant China			
		psie (dry besis) 892		
	Specific gravity (calculated from a		<u> </u>	
	Specific gravity (measured)		<u> </u>	
	Remarks:			
				

TELEPHONE (907) 279-4014

P.O.BOX 4-1276 ANCHORAGE, ALASKA 99509

4649 BUSINESS PARK BLVD.

Husky Oil Company South Barrow No. 19	Date May 18, 1978 Lab. No. 7936-
	LocationBarrow Sand
11 13 R T	Decit 2018-44
	Consider (Fourth Bato)
Alaska essure psig: Sample pressure 2	70 psig; Temperature 75 ° F; Container number
Alaska essurepsig; Sample pressure2 sSample No. 4 taken 5-13-	Formation Barrow Sand Depth 2018-44 Sampling point Separator (Fourth Rate) 70 psig; Temperature 75 • F; Container number 78
Alaska essurepsig: Sample pressure2 sSample No. 4 taken 5-13-	Sampling point Separator (Fourth Race) 70 psig; Temperature 75 ° F; Container number 75 ° F; Co
Alaska essurepsig: Sample pressure2 sSample No. 4 taken 5-13-	Sampling point Separator (Fourth Race) 70 psig; Temperature 75 ° F; Container number 75 ° F; Co

0 12.39 0.09 86.88 0.41 0.05	Gallons per MCF
0.41	
0.02 0.10 0.05 0.01 Trace	0.014 0.007 0.031 0.018 0.004
100.00	0.074
0	.022
	.611 .613
	
_	0

P.O. BOX 4-1276 Anchorage, Alaska 99509 TELEPHONE (907)-279-4014 274-3364 ANCHORAGE INDUSTRIAL CENTER 5633 B Street

C	Husky Oil Company	Date February 27, 1979	Leb. No. 9787-1
Company Well No	South Barrow No. 19	Location	
Field	South Barrow	Formation_Lower Barrow Si	and
County		Depth2044 Feet	<u> </u>
State	Alaska	Sampling point Choke	
Line pressu	re psig; Sample pressure 820 p	isig; Temperature 18 * F; Container num	ber
Remarks			
	Sample No. 1. Sample taken	February 14, 1979	
		Mole % or	
	Component	Volume %	
		0	
	Oxygen	4.37	
	Nitrogen	Irace	
	Carbon dioxide	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Hydrogen sulfide		
		95.65	Gallons
	Methane	0.02	per MCF
	Ethana Propana & Higher	· · · · · · · · · · · · · · · · · · ·	Trace
	•		

		Total 100.00	Trace
	GPM of pentanes & higher fraction.		· -
	Gross btu cu. ft. @60° F. & 14.7 ps	_	
	Specific gravity (calculated from ana		.572
	Specific gravity (measured)	<u> </u>	<u>.570</u>
	Remarks:	· · · • · · · · · · · · · · · · · · · ·	
•			
			

P.O. BOX 4-1276 Anchorage, Alaska 99509 TELEPHONE (907)-279-4014 274-3364 ANCHORAGE INDUSTRIAL CENTER 5633 B Street

_	Husky Oil Company	Date	February 27, 19	179 Lab. No. 9787-2
Company	South Barrow No. 19	_location		
Well No.	South Barrow	Formation_	South Barrow Sa	ınd
Field		Death	2044 Feet	
County	Alaska	Sampling p	cint Choke	
State		ig; Temperature	F; Container num	ber
Fine biestnie	brid: gembie bressoreb	ng, remperatoro		
Remarks	Sample No. 2. Sample take	n February 14, 1	979.	
			-	
	Compenent		Mole % or Volume %	
	Oxygen		<u>.</u>	
	Nitrogen		4.54	
	Carbon dioxide		Trace	
	Hydrogen sulfide			
	Methane		95.40	Gallons
	Ethane		0.04	per MCF
	Propens		0.02	0.005
	Iso-butane & Higher		Trace	<u> Trace </u>
	••			
				
			. ,	
			· · · · · · · · · · · · · · · · · · ·	
		Total	100.00	0.005
	GPM of pentanes & higher fraction,		<u></u> -	
	Gross btu cu. ft. @60° F. & 14.7 ps	ia (dry basis)	<u>965</u>	
	Specific gravity (calculated from ana	lysis)	0.5	73
	Specific gravity (measured)			70
	Sharing Arazil fillenson out 1 1 1 1 1 1			
	Remarks:	 -	· . —	
				
	····			

P.O. BOX 4-1276 Anchorage, Alaska 99509 TELEPHONE (907)-279-4014 274-3364 ANCHORAGE INDUSTRIAL CENTER 5633 8 Street

•	Husky Oil Company	Date	February	27,	1979_	Lab. No	9787-3
Company	South Barrow No. 19	Location_					
Well No	South Barrow	Formation	п			ow Sand	
Field		Death		2044	Feet		
County	Alaska	Sampling	point	Chok	e	<u> </u>	
State	990	psig: Temperature	18 * F. Cont	tainer	number		
Line pressure. Remarks				_			
Kemarks	Sample No. 3. Sample ta	ken February 14,	1979				
	30110270 110-						
	_			ie % o Jume 1	-		
	Component		YOL	Uine 7	76		
	_			0			
	Oxygen			4.50	<u> </u>		
	Nitrogen	* * · · · · · · · · · · · · · · · · · ·	· · · · · · ·	race			
	Carbon diaxide		· · · · · · · · - · · ·		_		
	Hydrogen sulfide			•	_		
			····	95.42	,	Gallons	
	Methane, ,			0.04	_	per MCF	
	Ethane			0.04		0.011	
	Propane		· · · · · · · · 	Trace		Trace	
			· · · · · · · · · · · · · · · · · · ·	1166	<u> </u>	-1466	
	.,	• • • • • • • • • • • • • • • • • • • •					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				
		• • • • • • • • • • • • • •					
		• • • • • • • • • • • • • • • • • •	· · · · · · · · 			 	
		• • • • • • • • • • • • • • • •					
		T-1-1		00.00	5 -	0.011	
		Total					
	GPM of pentanes & higher fraction						
	Griss or penianes a higher trachor	* - :	• • • • • • •				
	Gross btu cu. ft. @60° F. & 14.7	osia (dru basis)		9	965		
	Specific gravity (calculated from a				0.57	3	
	Specific gravity (calculated from all Specific gravity (measured)				0.57		
	opecific gravity (measured)				<u> </u>		
	Remarks:				_		
			<u> </u>				
					_		

HA - 1 (2/2/68)

REPORT OF ANALYSIS

M.S.N-67890 .H 1.11 F. S. - 15889 60.9 CAL, PRES. 65.6 OBS. PRES.

STATE- ALASKA

COUNTY- NORTHWESTERN

FIELD-BARROW E

1320'FEL, 1320 FSL

WELL NAME- WELL NO. 19

LOCATION- NOT GIVEN SEC. 23, TZZN, R. 17W

OWNER- HUSKY OIL NPR OPERATIONS INC

DATE COMPLETED- NOT GIVEN 16 Mar. 1978

DATE SAMPLED- 01/17/80

SAMPLED BY- NICHOLLS & CRANE

NAME OF PRODUCING FORMATION- NOT GIVEN BARROW SAND

DEPTH IN FEET-NOT GIVEN #2050

THICKNESS IN FEET- NOT GIVEN 20'

SHUT IN WELLHEAD PRES., PSIG- 1000

OPEN FLOW, MCF/D- NOT GIVEN 7,270 HCFFO

CHECK OF DATA-

THE WELL DATA ARE ACCURATE, (_____) WITHOUT CORRECTION,(_____) AS CORRECTED ABOVE.

REMARKS-

ANALYSIS-

METHANE	86.1	%	NORMAL PENTANE	TRACE	%	OXYGEN	0.0	%
ETHANE	0.5	*	ISOPENTANE	0.1	%	ARGON	TRACE	%
PROPANE	TRACE	%	CYCLOPENTANE	TRACE	%	HYDROGEN	0.0	%
NORMÁL BUTANE	0.1	%	HEXANES PLUS	TRACE	%	H2S *	0.0	%
ISOBUTANE	0.0	%	NITROGEN	11.5	%	CO2	0.1	%
SPECIFIC GRAV 0 . 604	•					HELIUM	1.22	%
						TOTAL	99.90	%

CALCULATED GROSS STU/CU, FT., DRY AT, 50 DEG, F. AND 30 IN. MERCURY- 889 * DUE TO THE ABSORPTION OF H2S DURING SAMPLING, THE REPORTED RESULTS MAY NOT BE RELIABLE

PERMISSION FOR RELEASE:

Permission is hereby granted for the Bureau of Mines to release the above data, together with similar data released by other operators as public information and as parts of a series of papers on analyses of gases from various fields, states, or regions.

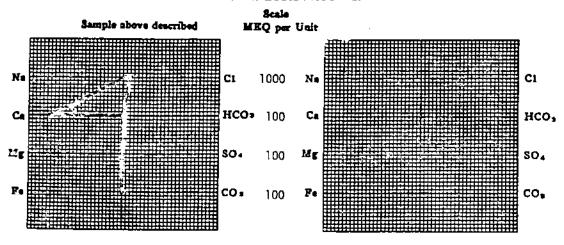
TELEPHONE (907) 279 - 4014 OR 274-3364 P.O. BOX 4-1276

4649 BUSINESS PARK BLVD.

ANCHORAGE, ALASKA 99509

CRUDE OIL ANALYSIS REPORT

Company_	Husky Oil Compan	ıy			Date	May	17, 1	978	L	b. No.	787	70
Well No	South Danney No. 10		Location									
Field	NPR #4				Formati	nci						
County					Formati Depth_	D:	ST_No.	_ <u>]</u>				
State	Alaska				Analyze							
	Specific gravity A.P.I. gravity (Saybolt Univer: Saybolt Univer: B. a. and water,	@ 60/60 * @ 60 *F sal Viscosii	F)*F., se ::::::::::::::::::::::::::::::::::::	onds conds	RIST	TCS		0.919 23.1 558 116 92	5 <u>4</u> 		
	Pour point, *F.								13	_		
	Total sulphur,								1.33	_		
REMARKS:												
ENG Recovery, %	LER DISTILLATIO	on rature, °F.				DIS	TILL	TION	GRAF	'H		
		350		***								
		398		700		r ===						
		450										
15		490		500								
20		<u>_518</u> _										
25		<u> 540</u>		500								
30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>560</u>										
		592 ·	-	400								
		610	Femperature, 'F									
	***************************************	624	ş	300								
		638	Š	•••								
			2	200								
55	***************************************		•	100								
70												
75				100								
												
04						4				111111111		
				0	10	20	30	40 50	50	70	10	96
36	pakking b@king											
96 95		638-Th	ierma1	Crack	ing		Percer	nt Recover	7			
96 93 E.P	Secovery, % 58.0	638_Th	ierma1	Crack		00 EP /		timate Rec	-	0_		-
26 25 E.P	FO A	<u>638-</u> Th	ierma1	Crack	3		Аррго	timate Rec	-	0 4.0 13.0		-


TELEPHONE (907) 279-4014

P.O.BOX 4-1276 ANCHORAGE, ALASKA 99509 4649 BUSINESS PARK BLVD.

WATER ANALYSIS REPORT

OPURATOR Husky Oil Company VALLE NO South Barrow No. 19 FIELD NPR #4 COUNTY STATE Alaska	DATE May 17,1978 LAB HO 7870 LOCATION FORMATION INTERVAL DST No. 1 SAMPLE FROM
PUMARKS & CONCLUSIONS:	
Corticos Imp/1 moq/1 Sodium 1771 77.07 Potaccium 1100 28.16 Calvirus 39000 1946.10 Liaguerium 40 3.29 Iron	Azione E-7/1 E-3/1
Total Cations	Total Anions 2054.62
Total distribut solids, mg/1	Specific renistance @ oe P.: Observed

WATER ANALYSIS PATTERN

(No value in observe graphs includes No. R. and Li) NOTE: Mg/1 mMMgranus par Not Men/1 m MMgranu squivalents per Utar Sediem oblevide superplanture; Denlam & Hausbrane calculation from community

ENGINEERING MEMORANDA

SOUTH BARROW WELL NO. 19

PRODUCTION TEST NO. I May 11-14, 1978

This memoranda is a presentation of the reservoir data gathered and reservoir calculations from the production test of the Barrow Sand in the South Barrow Well No. 19. Table I presents basic well and formation data. Table II is a listing of primary analysis results. These are original gas in place, back-pressure analysis, drawdown analysis, pressure buildup analysis, and pressure gradient test analysis. Presented next is a discussion of each analysis. Conclusions and recommendations are followed by datz, graphs, and example calculations.

TABLE I - WELL AND FORMATION DATA

1.	Barrow	Sandatone,	early-middle	Jurassic
----	--------	------------	--------------	----------

2. Perforations 2018 to 2044 feet at 4 spf

3.	Gross sand thickness
4.	Net pay thickness
5.	Bulk porosity in cet pay
6.	Effective porosity in met pay
7.	Average water saturation in net pay
8.	Gas gravity
9.	Critical temperature

10. Critical pressure

Reservoir temperature
 Initial reservoir pressure
 Initial gas compressibility

1 = 26 feet

h = 16 feet ØB = 24.2%

Øe = 20.8%

 $S_{w} = 48.2$

eg = 0.611 $T_c = 336.1^{\circ}R$

 $P_c = 650.9 \text{ psia}$

T1 = 5270R

 $P_i = 984.0$ $E_i = 0.88$

TABLE II - LISTING OF TEST RESULTS

Volumetric Reserves:

Original gas in place = 353.466 McF/AcFt

Backpressure Analysis:

Absolute open flow = AOF = 7.22 MMcF/D Back pressure slope = n = 0.844 Back pressure constant = C = .000064062 PMcF/D

C. Pressure Buildup Analysis:

Initial reservoir pressure Flow Capacity

P_i = 984 psia kh = 542.19 md ft

Permeability k = 33.89 mdSkin S = 1.348Skin pressure drop ∠Ps = 42.22 psi Productivity index (actual) $J_a = 14.13 \text{ McF/d}$ psi Productivity index (ideal) $J_{i} = 16.87 \, McF/d$ psí Flow efficiency Ef = .837 Gas mobility M = 2854.6 md/cp rw = 1.104 inch Effective wellbore radius Approximate radius of investigation riny = 462 ft

D. Wellbore Pressure Gradient Survey:

BHP at 2037 ft = 980.9
Fluid level = 1767
WHP = 793.0
Fluid gradient = .515 psi/ft

DISCUSSION OF DATA, ANALYSIS TECHNIQUE, AND RESULTS

Original Gas in Place

The porosity, water saturation, and reservoir temperature used in the calculation of Original Gas in Place were derived from log analysis and are representative of the 16 feet of net pay selected between 2023 and 2040 feet. The initial reservoir pressure was derived from the buildup analysis, with both the initial and final buildup curves indicating 984.0 psia. The pressure readings were taken from the Sperry Sun Tool No. 311 at 2037 feet.

The calculated value of Original Gas in Place is 353.466 McF/Ac ft. This is 18.5% higher than the assumed value of 298.2 McF/Ac ft in use for the South Barrow field. The primary cause of this difference is the porosity of 20.8% as opposed to the 16.0% in use as an average field porosity.

Four Point Backpressure Analysis

The pressure-flow history obtained during the four point flow test was very smooth and provided excellent alignment of points in the plot of P_c^2 - P_t^2 vs Q. The indicated absolute open flow was 7.22 MMcF/d. The backpressure slope was 0.844.

Reservoir Parameter Analysis

Two types of reservoir parameter analysis were performed. The first drawdown of the four point flow was analyzed as was the final buildup. Table III compares the results of these two analyses.

The drawdown analysis technique was based on the semilog plot of Pwf vs log Tp and the pressure equation:

Pwf = P₁ - 28984 q µgBg log Tp + log
$$\frac{k}{p_{\mu}gC_{c}r_{w}^{2}}$$
 -3.2275 + 0.86859 S

The final buildup was analyzed using a multiple flow rate technique with the

plot of
$$P_{WS}$$
 vs $\sum_{j=1}^{n} q_{j} q_{n} = \log \left(\frac{Tn - T_{j-1} + \Delta T}{Tn - T_{j} + \Delta T} \right)$

and the equation of the straight line being

$$P_{ws} = P_j - \frac{28984 \text{ q } \mu \text{g Bg}}{kh} \sum_{j=1}^{n} q_j q_n \log \left(\frac{T_n - T_{j-1} + \Delta T}{T_n - T_j + \Delta T} \right)$$

This analysis was chosen as the most representative of the reservoir as the flow and buildup times were the longest and the shut in pressure at the start of the flow period was nearest to the projected initial reservoir pressures. Table III shows that the values of kh are in close agreement. The kh in use in the South Barrow field is 154.5 md ft. The calculated kh for Wells No. 14 and No. 17 were 346.28 md ft and 493.80 md ft respectively. The values of Skin, $\Delta P_{\rm S}$ and $r_{\rm W}$ ' show considerable divergence. This can be explained, however, by the rate dependent nature of these parameters. The most significant fact about the Skin and Flow Efficiency parameters is that they show a considerably larger amount of formation damage than was indicated by the tests of Well No. 17 and Well No. 14.

TABLE III - COMPARISON OF TEST ANALYSES

Derived Parameter	Drawdown Value	Buildup Value
Flow Capacity	kh = 567.90 md/ft	kh = 542.19 md/ft
Permeability	k = 35.49 md	k = 33.89 md
Skin	S = .786	s = 1.348
Skin Pressure Drop	$\Delta P_s = 6.77 \text{ psi}$	ΔP _s = 42.22 psi
Actual Productivity Index	Ja = 19.57	$J_a = 14.13$
Ideal Productivity Index	$J_i = 22.06$	$J_{i} = 16.87$
Flow Efficiency	E _f = 88.71	E _f = 83.7
Gas Mobility	M = 2936.9 md 근무	$M = 2854.6 \frac{md}{cp}$
Effective Wellbore Radius	rw' = 1.936 inch	r _v ' = 1.104 inch
Radius of Investigation	r _{inv} = 222 ft	r _{inv} = 462.6 ft

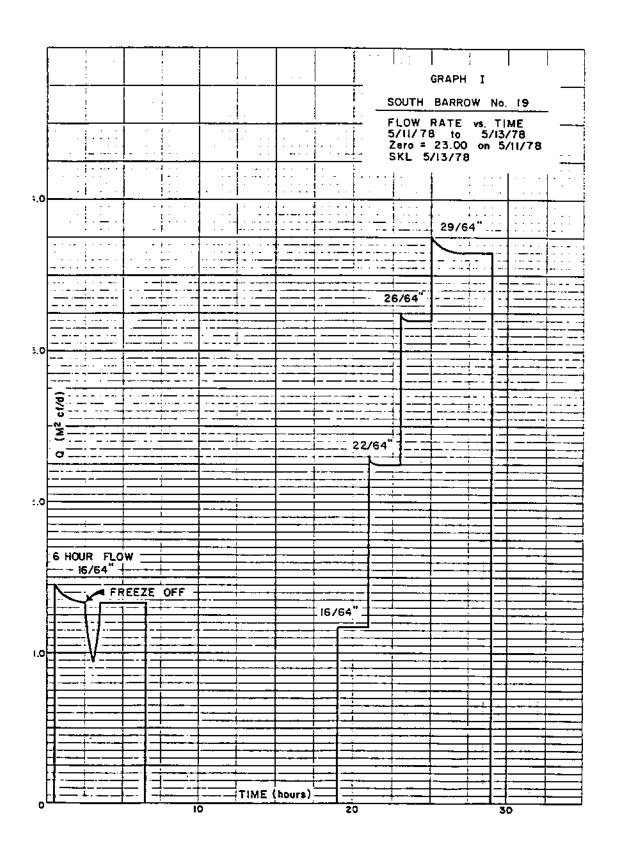
Pressure Gradient Survey

The pressure gradient survey was run with stops at 25, 50, 100, 500, 1000, and 1500 feet of bottom. The survey results are presented in Table II.

CONCLUSIONS AND RECOMMENDATIONS

The production testing of South Barrow No. 19 was exceptionally smooth operationally and yielded excellent pressure and flow data. Minor problems were experienced with the test tree and one flow line freeze off was successfully countered with alcohol injection.

The somewhat higher (as compared to South Barrow Wells No. 14 and 17) skin damage may be due to the 232 psi overbalance being carried when the well was perforated. It would appear that 100 psi overbalance might be a better operation parameter from a reservoir viewpoint. Also of interest is the total absence of produced water during the flow period. This is probably due to the structurally high position of the well. As compared to the water production experienced in Well No. 17, the dry nature of Well No. 19 confirms the importance of staying high on the structure in future wells and exercising caution in selecting the perforation interval in any wells which may be drilled lower on the structure.


DATA AND EXAMPLE CALCULATIONS

Attached are data displays and calculations as listed below.

10. Example Calculation V

1.	Graph I	Flow Rate vs Time
2.	Example Calculation I	Original Gas in Place
3.	Graph II	P _c ² -P _t ² vs Q
4.	Example Calculation II	Backpressure Data
5.	Graph III	Pt vs Log Tp
6.	Example Calculation III	Drawdown Analysis
7.	Graph IV	$P_{ws} vs \sum_{j=1}^{n} q_{j} / q_{n} \log \left(\frac{Tn - T_{j-1} + \Delta T}{Tn - T_{j} + \Delta T} \right)$
8.	Example Calculation IV	Buildup Analysis
9.	Graph V	Pus vs Depth

Gradient Analysis

EXAMPLE CALCULATION I

Volumetric Reserve Calculation

Original Gas in Place - McF/AcFt

43560 Ft²/Ac

øe = 20.8%

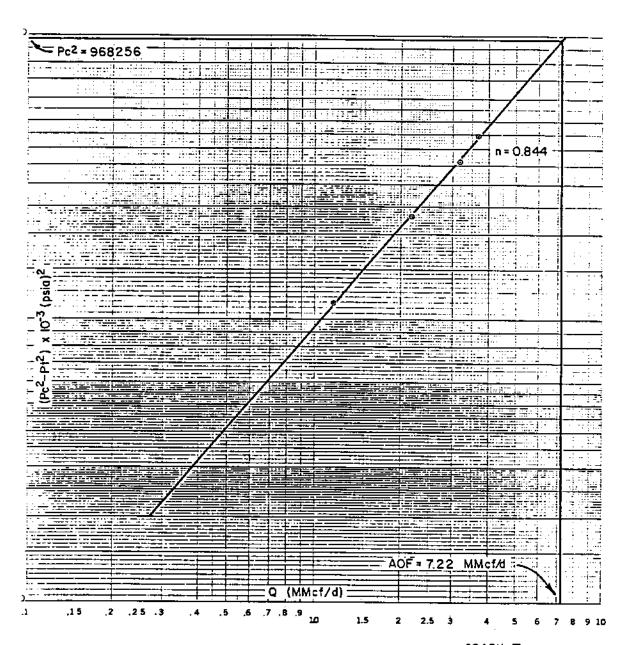
Sw = 48.2%

 $P_1 = 984.0 \text{ psia}$

Ti = 67°F

2i = .880

Tsc = 5200R


 $P_{SC} = 14.65$ psia

OGIP = A Ø Sg $\frac{P_i}{P_{sc}}$ $\frac{T_{sc}}{T_i}$ $\frac{1}{Z_i}$

= 43560 x .208 x .518 x $\frac{984}{14.65}$ x $\frac{520}{527}$ x $\frac{1}{.87}$

= 353.466 McF/Ac Ft

ATTÀCHMENT 2

GRAPH II

SOUTH BARROW No. 19

Q vs pc²-pt²

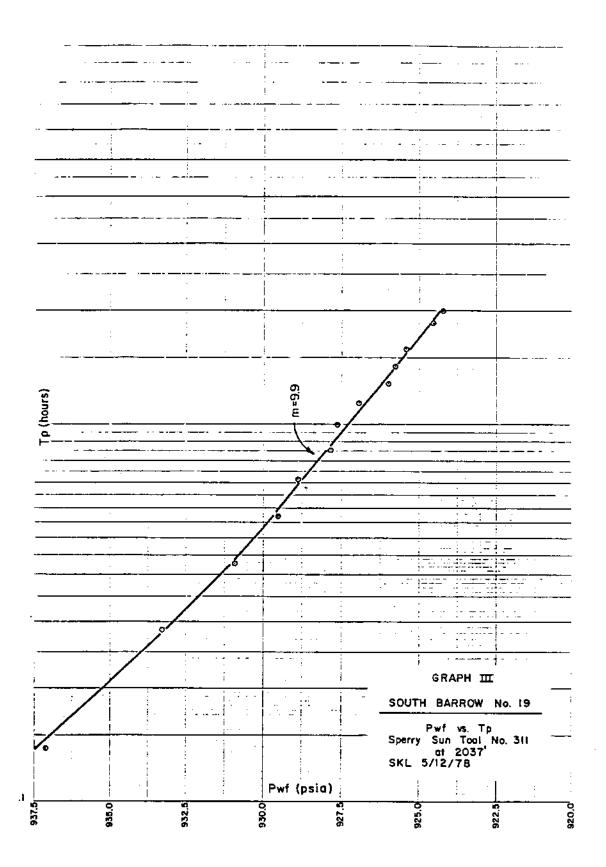
Sperry Sun Tool No. 311
at 2037'

SKL 5/13/78

EXAMPLE CALCULATION II

Four Point Flow Test - 5/12/78

Initial Reservoir Pressure = 984 psia


Rate	Choke	Pressure	Flow Rate	<u>AP²</u>
1	16/64	924.2 psia	1.170 H ² cF/d	114077
2	22/64	858.5 psia	2.188 H ² cF/d	231233
3	26/64	779.4 psia	3.191 M ² cF/d	360826
4	29/64	724.5 psia	$3.687 \text{ M}^2\text{cF/d}$	445165

 $AOF = 7.220 \text{ M}^2 \text{cF/d}$

n = .844

c = .000064062 <u>H²cF/d</u> ps²

ATTACHMENT 4

EXAMPLE CALCULATION III

First Drawdown - Sperry Sun Tool 311 at 2037'

I.
$$B_g = Z \frac{T}{T_{SC}} \frac{P_{SC}}{\frac{P1-Pwf}{2}}$$
 $P_c = 650.9$ $T_R = 1.568$ $P_R = \frac{954.1}{650.9}$ $P_R = \frac{954.1}{650.9}$

z - .882

$$B_g = .882 \frac{527}{520} \frac{14.65}{954.1} = .01372$$

II.
$$\mu g = \mu g/\mu i = 0.0106 \times 1.14 = .012084$$

III.
$$C_c = S_gC_g + S_wC_w + C_f = (.518 \times .00115225) + (.482 \times 3.3 \times 10^{-6}) + (3.3 \times 10^{-6}) = C_c = .0006017561$$

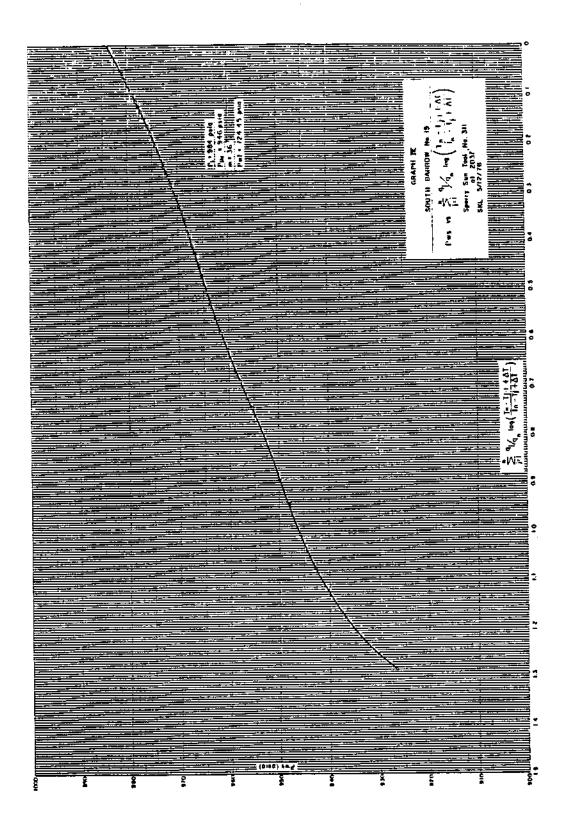
V.
$$S = 1.1513 \quad \left(\frac{\text{Pi} - \text{Plhr}}{\text{m}}\right) - \log\left(\frac{k}{\theta u \text{Ctr}_{\psi}^2}\right) + 3.2275$$

$$S = .786117$$

I.
$$\Delta P_s = m \times .87(S) = 9.9 \times .87 (.786117)$$

$$J_{a} = \frac{q}{P_{i} - P_{wf}} = \frac{1170}{984.0 - 924.2} = 19.57 \frac{McF/d}{psi}$$

$$J_{i} = \frac{q}{(P_{i} - P_{wf})} = \Delta P_{s} = \frac{1170}{984 - 924.2 - 6.77} = 22.06 \frac{McF/d}{psi}$$


Flow Efficiency =
$$\frac{J_a}{J_f} = \frac{19.57}{22.06} = .8871$$

ATTACHMENT 6

VIII. Average Gas Mobility = M
$$\frac{M = \frac{kg}{\mu g} = \frac{35.49}{.012084} = \frac{2936.94 \text{ md/CP}}{}$$

- IX. Effective Wellbore Radius = r_w ' $r_w' = r^w e^{-s} = 1.936 \text{ inches}$
- X. Approximate Radius of Investigation * r_{inv} = $\sqrt{\frac{0.00105 \text{ k Tp}}{0 \text{ µ Ct}}}$ = 222 ft

ATTACHMENT 6 Page 2

H-12

EXAMPLE CALCULATION IV

Final Buildup - Sperry Sun Tool 311 at 2037'

I.
$$B_g = Z \frac{T}{T_{SC}} \frac{P_{SC}}{\frac{Pi-Pwf}{2}}$$
 $P_c = 336.1^{\circ}R$ $T_R = 1.568$ $P_R = \frac{854.225}{650.9}$ $T_R = 1.312$

£ # .890

$$B_g = .890 \quad \frac{527}{520} \quad \frac{14.65}{854.225} = .015469$$

II.
$$\mu g = \mu i \ X \ \mu g/\mu i = .0106 \ X \ 1.12 = .011872$$

III.
$$C_c = SgCg + SwCw + CF = (.518 \times .00129052) + (.482 \times 3.3 \times 10^{-6}) + (3.3 \times 10^{-6}) = C_c = .0005606721$$

v.
$$S = 1.1513 \left(\left(\frac{P1hr - Pwf}{m} \right) - \log \left(\frac{k}{\theta \mu Ctrw^2} \right) + 3.2275 \right)$$

$$S = 1.348$$

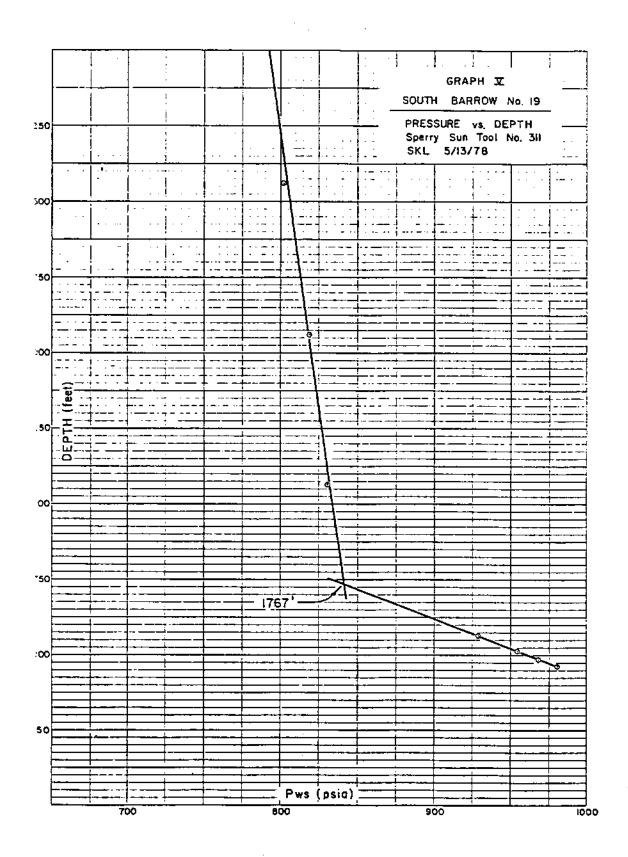
VI.
$$\Delta P_g = m \times .87(S) = 36 \times .87 (1.348)$$

= 42.22 psi

VII. Productivity Index = J

$$J_{a} = \frac{q}{P_{i} - P_{wf}} = \frac{3667}{984 - 724.45} = 14.128 \frac{McF/d}{psi}$$

$$J_{i} = \frac{q}{P_{i} - P_{wf}} - \Delta P_{s} = \frac{3667}{(984 - 724.45) - 42.22} = 16.873 \frac{McF/d}{psi}$$
Flow Efficiency = $\frac{J_{a}}{J_{i}} = \frac{14.128}{16.873} = 0.837$


ATTACHMENT 8

VIII. Average Gas Mobility = M

$$M = \frac{kg}{\mu g} = \frac{33.89}{.011872} = 2854.6 \text{ md/CP}$$

- IX. Effective Wellbore Radius = r_{ψ} ' $r_{\psi}^{1} = r^{\psi} e^{-S} = 1.104 \text{ inches}$
- X. Approximate Radius of Investigation = r_{inv} $r_{inv} = \sqrt{\frac{0.00105 \text{ k Tp}}{6 \text{ µ Ct}}} = 463 \text{ ft}$

ATTACHMENT 8 Page 2

EXAMPLE CALCULATION V

Pressure Gradient Test - 5/13/78

<u>D</u>	<u>L</u>	<u>P</u>	<u>ΔP</u>	<u>Gradient</u>
2037	0	980.9	0	-
2012	25	968.1	12.8	.512 psi/ft
1987	25	954.7	13.4	.536 psi/ft
1937	50	929.4	25.3	.506 psi/ft
1437	500	831.0	98.4	.197 psi/ft
937	500	819.7	11.3	.023 psi/ft
437	500	802.2	17.5	.035 psi/ft
0	437	793.0*	9.2	.021 psi/ft*

^{*}Extrapolated from plot of P vs D

ATTACHMENT 10