Coastal Plain and Offshore Assessment Unit 70130101

Coastal Plain and Offshore Assessment Unit 70130101

Senegal Geologic Province 7013

USGS PROVINCE: Senegal (7013) **GEOLOGIST:** M.E. Brownfield and R.R. Charpentier

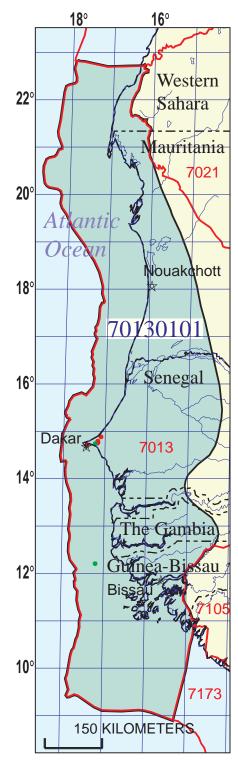
TOTAL PETROLEUM SYSTEM: Cretaceous-Tertiary Composite (701301)

ASSESSMENT UNIT: Coastal Plain and Offshore (70130101)

DESCRIPTION: Cretaceous and Tertiary rocks and reservoirs within the Senegal Basin.

SOURCE ROCKS: Marine shales in the Cenomanian-Turonian rocks. The Turonian can be as thick as 150 m and TOC (Type II kerogen) values range from 3 to 10 percent.

MATURATION: Latest Cretaceous? to Recent. Maturation is reached at reasonable depths from 1,500 to 2,900 m in the vicinity of the Dakar peninsula and in the Casamance offshore because of elevated geothermal gradients related to volcanism and salt diapirism.


MIGRATION: Late Miocene to Recent.

RESERVOIR ROCKS: Upper Cretaceous sandstones and lower Tertiary clastics and carbonates. The Lower Cretaceous carbonate platform (sealed by Cenomanian shales) shows good porosities from 10 to 23 percent. Cretaceous carbonate banks have not been explored. Oligocene carbonate reservoirs exist such as Dome Flore, which contains as much as 1 billion barrels of heavy oil (10° API, 1.6 percent sulfur).

TRAPS AND SEALS: Mesozoic-Cenozoic salt-related structures, fault-related structures related to volcanic intrusion (Dakar peninsula), growth fault related traps, slope truncation traps along the present shelf edge, Mesozoic pinchouts along the eastern margin, Lower Cretaceous-Jurassic carbonate bank deposits, and possible turbidite related traps.

REFERENCES:

- Dumestre, M.A., 1985, The petroleum geology of Senegal; Oil and Gas Journal, October 28, 1985, p. 146-152.
- Kuhnt, Wolfgang, and Wiedmann, Jost, 1995, Cenomanian-Turonian source rocks—Paleobiogeographic and paleoenvironmental aspects, *in* Huc, Alain-Yves, ed., Paleogeography, paleoclimate, and source rocks: American Association of Petroleum Geologists Studies in Geology 40, p. 213-231.
- Reymond, A. and Negroni, P., 1989, Hydrocarbon occurrences in NW Africa's MSGBC area: World Oil, v. 209, no. 6, p.53-58.
- Wissmann, Gerd, 1982, Stratigraphy and structural features of the continental margin basin of Senegal and Mauritania, *in* von Rad, U., Hinz, K., Sarnthein, M., and Seibold, E., eds., Geology of the northwest African continental margin: Berlin Heidleberg, Springer-Verlag, p. 160-181.

Coastal Plain and Offshore Assessment Unit - 70130101

EXPLANATION

HydrographyShoreline

70130101 — Asi

Assessment unit code and boundary

7013 — Geologic province code and boundary

- --- Country boundary
- Gas field centerpoint
- Oil field centerpoint

Projection: Robinson. Central meridian: 0

SEVENTH APPROXIMATION NEW MILLENNIUM WORLD PETROLEUM ASSESSMENT DATA FORM FOR CONVENTIONAL ASSESSMENT UNITS

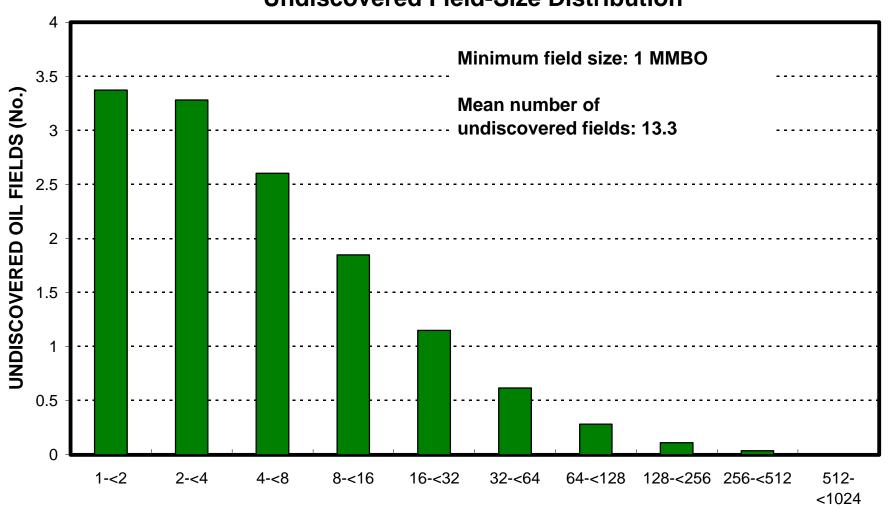
Date:	9/22/99					
ssessment Geologist: M.E. Brownfield and R.R. Charpentier						
	Sub-Saharan Africa and Antarctica			Number:	7	
Province:	Senegal			Number:	7013	
Priority or Boutique						
Total Petroleum System:					Number:	
Assessment Unit:		nore			Number:	70130101
* Notes from Assessor	MMS growth function.					
	CHARACTERISTICS			IT		
Oil (<20,000 cfg/bo overall) o	<u>r</u> Gas (<u>></u> 20,000 cfg/bo o	verall):	Oil			
What is the minimum field size (the smallest field that has pot						
Number of discovered fields e	xceeding minimum size:		Oil:	1	Gas:	2
Established (>13 fields)	Frontier (1	-13 fields)	Х	lypothetical	(no fields)	
Median size (grown) of discov	ered oil fields (mmboe):					
Median size (grown) of discov	1st 3rd	11.6	2nd 3rd		3rd 3rd	
inecial size (grown) of discov	1st 3rd	26.2	2nd 3rd_	32.9	3rd 3rd	
Assessment-Unit Probabiliti	es:		-	Nachaela III.		(0.4.0)
Attribute	oum charge for an undic	ooyorod fio			of occurren	
 CHARGE: Adequate petrol ROCKS: Adequate reserve 						1.0 1.0
3. TIMING OF GEOLOGIC EV						1.0
5. Thinks of Second Ev	LITTO. T avolable tilling	j ioi ali alia	iscovered ne	<u> </u>	3111 3126	1.0
Assessment-Unit GEOLOGIC	C Probability (Product o	of 1, 2, and 3	3):		1.0	
4. ACCESSIBILITY: Adequa	te location to allow explo	ration for a	n undiscovere	ed field		
> minimum size	·					1.0
_						
UNDISCOVERED FIELDS Number of Undiscovered Fields: How many undiscovered fields exist that are ≥ minimum size?: (uncertainty of fixed but unknown values)						
Oil fields:	, ,	1	median no.	12	max no.	35
Gas fields:	min. no. (>0)	1	median no.	10	max no.	25
Size of Undiscovered Fields: What are the anticipated sizes (grown) of the above fields?: (variations in the sizes of undiscovered fields)						
Oil in oil fields (mmbo)	min size	1	median size	4	max. size	500
Gas in gas fields (bcfg):		6	median size	20	max. size	
Sas in gas noids (borg)		<u> </u>			max. SIZE	1000

Assessment Unit (name, no.) Coastal Plain and Offshore, 70130101

AVERAGE RATIOS FOR UNDISCOVERED FIELDS, TO ASSESS COPRODUCTS

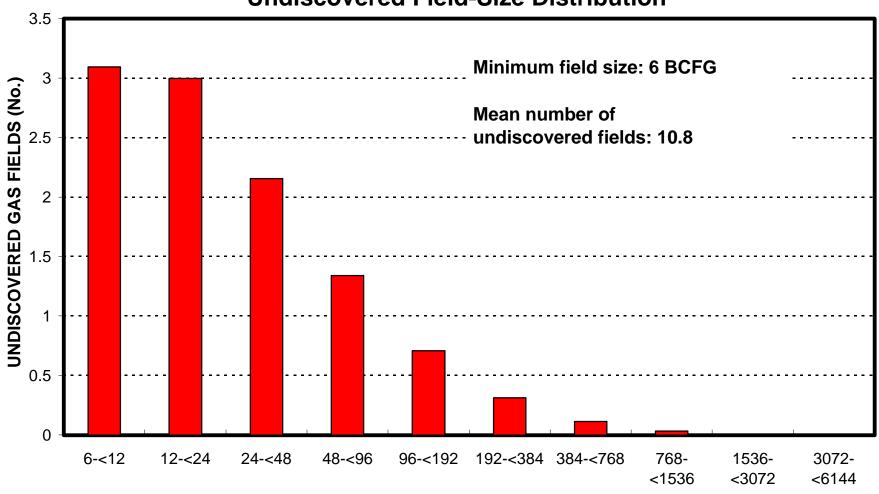
(uncertainty of fixed but u	inknown values)
-----------------------------	-----------------

	minimum	median	maximum
Oil Fields: Gas/oil ratio (cfg/bo)	1100	2200	3300
NGL/gas ratio (bngl/mmcfg)	30	60	90
5 1945 44 4 91 5 9,			
Gas fields:	minimum	median	maximum
Liquids/gas ratio (bngl/mmcfg)	22	44	66
Oil/gas ratio (bo/mmcfg)			
SELECTED ANCILLARY DA	ATA FOR UNDISC	OVERED FIELDS	
SELECTED ANCILLARY DA (variations in the prop			
			maximum
(variations in the prop	perties of undiscov	ered fields)	maximum 50
Oil Fields:	perties of undiscov minimum	ered fields) median	
(variations in the proposition of the proposition o	perties of undiscov minimum 10	ered fields) median 36	50
(variations in the proposition of the proposition o	perties of undiscov minimum 10 0.06	ered fields) median <u>36</u> 0.7	50 1.6
(variations in the proposition of the proposition o	perties of undiscov minimum 10 0.06 500	ered fields)	50 1.6 4000
(variations in the proposition of the proposition o	perties of undiscov minimum 10 0.06 500	ered fields)	50 1.6 4000


Gas Fields: Inert gas content (%)	minimum	median	maximum
CO ₂ content (%)			
Drilling Depth (m)	500	1500	5000
Depth (m) of water (if applicable)	0	500	2000

ALLOCATION OF UNDISCOVERED RESOURCES IN THE ASSESSMENT UNIT TO COUNTRIES OR OTHER LAND PARCELS (uncertainty of fixed but unknown values)

1. Mauritania	represents	31	areal % of the total assessment	unit
Oil in Oil Fields: Richness factor (unitless multiplier):		minimum	median	maximum
Volume % in parcel (areal % x richness				
Portion of volume % that is offshore (0-			100	
Total of volume // that is enonere (e	10070/			
Gas in Gas Fields: Richness factor (unitless multiplier):		minimum	median	maximum
Volume % in parcel (areal % x richness			31	
Portion of volume % that is offshore (0-			100	-
`	•		<u> </u>	
2. <u>Senegal</u>	represents	32	areal % of the total assessment	unit
Oil in Oil Fields:		minimum	median	maximum
Richness factor (unitless multiplier):				
Volume % in parcel (areal % x richness			32	
Portion of volume % that is offshore (0-	-100%)		80	
Gas in Gas Fields: Richness factor (unitless multiplier):		minimum	median	maximum
Volume % in parcel (areal % x richness			32	
Portion of volume % that is offshore (0-			80	
3. <u>Guinea-Bissau</u>	represents	24	areal % of the total assessment	unit
Oil in Oil Fields: Richness factor (unitless multiplier):		minimum	median	maximum
Volume % in parcel (areal % x richness	s factor):		24	
Portion of volume % that is offshore (0-	-100%)		100	
Gas in Gas Fields:		minimum	median	maximum
Richness factor (unitless multiplier):				
Volume % in parcel (areal % x richness			24	
Portion of volume % that is offshore (0-			100	
4. The Gambia	_represents	4	areal % of the total assessment	unit
Oil in Oil Fields:		minimum	median	maximum
Richness factor (unitless multiplier):				
Volume % in parcel (areal % x richness			4	
Portion of volume % that is offshore (0-			100	·
. 6.116.1 6. 16.11.1 /6 11.11.1 6.16.1 (6				
Gas in Gas Fields: Richness factor (unitless multiplier):		minimum	median	maximum
Volume % in parcel (areal % x richness			4	
Portion of volume % that is offshore (0-	-100%)		100	


5. <u>Western Sahara</u> represents	sa	real % of the total asses	ssment unit
Oil in Oil Fields: Richness factor (unitless multiplier):	minimum	median	maximum
Volume % in parcel (areal % x richness factor): Portion of volume % that is offshore (0-100%)		9 100	
Gas in Gas Fields: Richness factor (unitless multiplier):	minimum	median	maximum
Volume % in parcel (areal % x richness factor): Portion of volume % that is offshore (0-100%)		9	

Coastal Plain and Offshore, AU 70130101 Undiscovered Field-Size Distribution

OIL-FIELD SIZE (MMBO)

Coastal Plain and Offshore, AU 70130101 Undiscovered Field-Size Distribution

GAS-FIELD SIZE (BCFG)