Self-Sourced Domanik Assessment Unit 10150104

Geologic Summary

Detailed map of this assessment unit

Assessment Input Data

Assessment Results

This assessment unit was not assessed quantitatively.

Self-Sourced Domanik Assessment Unit 10150104

Volga-Ural Region Geologic Province 1015
USGS PROVINCE: Volga-Ural Region (1015) GEOLOGIST: G.F. Ulmishek

PETROLEUM SYSTEM: Volga-Ural Domanik-Paleozoic (101501)

ASSESSMENT UNIT: Self-Sourced Domanik (10150104)

DESCRIPTION: This assessment unit encompasses the largest part of the petroleum system area north and east of the Zhigulev-Pugachev arch. The unit includes fractured reservoirs in carbonate and siliceous rocks of the Frasnian Domanik Formation, which is also a source rock for the accumulations. Oil is produced in several fracture zones, which may be considered sweet spots in continuous unconventional accumulation. Although in this project the unit did not receive quantitative assessment, it may have high future potential associated with application of modern drilling and completion technologies.

SOURCE ROCKS: The principal source rock is the middle Frasnian Domanik Formation, which stratigraphically widens into the Tournaisian in the Kama-Kinel basins. The formation is 25 to 40 m thick and contains as much as 25 percent TOC.

MATURATION: The Domanik Formation is in the oil window over most of the assessment unit area and dips into the gas window to the southeast. Probably, maturation was reached mainly during deposition of thick Upper Permian-Triassic orogenic clastics, but could have slightly advanced in Jurassic-Paleogene time, which was followed by regional uplift and erosion.

MIGRATION: Only primary migration from generation sites in the source rocks to fractures is characteristic of the assessment unit.

RESERVOIR ROCKS: Matrix porosity of Domanik carbonate and siliceous rocks is low and the rocks are essentially tight. Oil production is controlled by development of fractures. Probably, fractures formed due to both tectonic deformations with associated faulting and overpressure related to hydrocarbon generation.

TRAPS AND SEALS: Traps are formed by zones of fracturing. Although presently production is established on local structural uplifts, these zones can be found in various structural settings. Oil accumulations are sealed by the Kynov shale bed directly overlying the Domanik Formation. In central areas of the Kama-Kinel depressions where the entire Upper Devonian-Tournaisian sequence is formed by Domanik-type facies, thick lower Visean shales seal oil pools in underlying fractured reservoirs.

REFERENCES:
Self-Sourced Domanik
Assessment Unit - 10150104

EXPLANATION

- Hydrography
- Shoreline
- Geologic province code and boundary
- Country boundary
- Gas field centerpoint
- Oil field centerpoint

SEVENTH APPROXIMATION
NEW MILLENNIUM WORLD PETROLEUM ASSESSMENT
DATA FORM FOR CONVENTIONAL ASSESSMENT UNITS

Date: …………………………… 6/3/99
Assessment Geologist: …………. G.F. Ulmishek
Region: ………………………….. Former Soviet Union Number: 1
Province: ………………………… Volga-Ural Region Number: 1015
Priority or Boutique…. …………. Priority
Total Petroleum System:……… Volga-Ural Domanik-Paleozoic Number: 101501
Assessment Unit:……………… Self-Sourced Domanik Number: 10150104

* Notes from Assessor

CHARACTERISTICS OF ASSESSMENT UNIT

Oil (<20,000 cfg/bo overall) or Gas (>20,000 cfg/bo overall): …… …….

What is the minimum field size? ………. mmboe grown (≥1mmboe)
(the smallest field that has potential to be added to reserves in the next 30 years)

Number of discovered fields exceeding minimum size:…………… Oil: Gas:
Established (>13 fields) Frontier (1-13 fields) Hypothetical (no fields)

Median size (grown) of discovered oil fields (mmboe):
1st 3rd 2nd 3rd 3rd 3rd

Median size (grown) of discovered gas fields (bcfg):
1st 3rd 2nd 3rd 3rd 3rd

Assessment-Unit Probabilities:

Attribute Probability of occurrence (0-1.0)
1. CHARGE: Adequate petroleum charge for an undiscovered field > minimum size…………
2. ROCKS: Adequate reservoirs, traps, and seals for an undiscovered field > minimum size…. …
3. TIMING OF GEOLOGIC EVENTS: Favorable timing for an undiscovered field > minimum size

Assessment-Unit GEOLOGIC Probability (Product of 1, 2, and 3):………………….……

4. ACCESSIBILITY: Adequate location to allow exploration for an undiscovered field
> minimum size…………………………………………………………………

UNDISCOVERED FIELDS

Number of Undiscovered Fields: How many undiscovered fields exist that are > minimum size?:
(uncertainty of fixed but unknown values)

Oil fields: …………………………….min. no. (>0) _______ median no. _______ max no.
Gas fields: ……………………………min. no. (>0) _______ median no. _______ max no.

Size of Undiscovered Fields: What are the anticipated sizes (grown) of the above fields?:
(variations in the sizes of undiscovered fields)

Oil in oil fields (mmbo)…………………….min. size _______ median size _______ max. size
Gas in gas fields (bcfg): …………………min. size _______ median size _______ max. size
AVERAGE RATIOS FOR UNDISCOVERED FIELDS, TO ASSESS COPRODUCTS

(uncertainty of fixed but unknown values)

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas/oil ratio (cfg/bo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGL/gas ratio (bngl/mmcfg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquids/gas ratio (bngl/mmcfg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil/gas ratio (bo/mmcfg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SELECTED ANCILLARY DATA FOR UNDISCOVERED FIELDS

(variations in the properties of undiscovered fields)

<table>
<thead>
<tr>
<th>Property</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API gravity (degrees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfur content of oil (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Depth (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m) of water (if applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inert gas content (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ content (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen-sulfide content (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drilling Depth (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (m) of water (if applicable)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Allocation of Undiscovered Resources in the Assessment Unit

To Countries or Other Land Parcels (uncertainty of fixed but unknown values)

1. __________________________ represents _______ areal % of the total assessment unit

<table>
<thead>
<tr>
<th></th>
<th>Oil in Oil Fields</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Richness factor (unitless multiplier):</td>
<td>minimum</td>
<td>median</td>
<td>maximum</td>
</tr>
<tr>
<td>Volume % in parcel (areal % x richness factor):</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Portion of volume % that is offshore (0-100%):</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gas in Gas Fields</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Richness factor (unitless multiplier):</td>
<td>minimum</td>
<td>median</td>
<td>maximum</td>
</tr>
<tr>
<td>Volume % in parcel (areal % x richness factor):</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Portion of volume % that is offshore (0-100%):</td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>