Analytic Resource Assessment Method for Continuous Petroleum Accumulations—The ACCESS Assessment Method

By Robert A. Crovelli

Chapter 22 of **Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah** By USGS Southwestern Wyoming Province Assessment Team

U.S. Geological Survey Digital Data Series DDS-69-D

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

Gale A. Norton, Secretary

U.S. Geological Survey

Charles G. Groat, Director

U.S. Geological Survey, Denver, Colorado: Version 1, 2005

For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Manuscript approved for publication May 10, 2005

ISBN= 0-607-99027-9

Contents

Abstract	1
Introduction	1
Geologic Assessment Model	1
Analytic Probabilistic Method	5
Spreadsheet System	7
References Cited	10

Figures

1. The FORSPAN input-data form	2
2. Simplified flow chart of analytic probabilistic method for resource assessment	
of continuous oil and gas accumulations—the ACCESS method	6
3. Simplified flow chart of calculations for determining number of potential cells	8

Table

Analytic Resource Assessment Method for Continuous Petroleum Accumulations—The ACCESS Assessment Method

By Robert A. Crovelli

Abstract

The analytic resource assessment method, called ACCESS, was developed to calculate estimates of petroleum resources for the geologic assessment model, called FORSPAN, in continuous petroleum accumulations. The ACCESS method is based upon mathematical equations derived from probability theory in the form of a computer spreadsheet system.

Introduction

This report explains the development of an analytic probabilistic method and spreadsheet software system called Analytic Cell-based Continuous Energy Spreadsheet System (ACCESS), originally published in Crovelli (2000). The ACCESS spreadsheet can be used to calculate estimates of the potential additions to reserves of oil, gas, and NGL (natural gas liquids) in a continuous assessment unit, within a total petroleum system. The ACCESS method is based upon mathematical equations derived from probability theory. It employs a geologic assessment model, an analytic probabilistic method, and finally, the ACCESS spreadsheet.

Geologic Assessment Model

The FORSPAN geologic assessment model is explained in detail in Schmoker (1999). The input-data form to record data required by the FORSPAN assessment model is described in Klett and Schmoker (Chapter 18, this CD–ROM) and illustrated in figure 1. The seven sections of the input-data form, which is completed by the geologist for each assessment unit of a continuous accumulation, are:

- Identification information
- Characteristics of assessment unit [see fig. 1]
- Number of untested cells with potential for additions to reserves in the next 30 years

[hereinafter shortened to "number of potential untested cells"]

- Total recovery per cell
- Average coproduct ratios for untested cells, to assess coproducts
- Selected ancillary data for untested cells
- Allocations of potential additions to reserves to land entities.

The geologic assessment model for an assessment unit consists of the following components extracted from the input data provided by the geologist:

- A. A set of four assessment-unit probabilities, which are discussed in detail by Schmoker (Chapter 13, this CD–ROM):
 - 1. Charge
 - 2. Rocks
 - 3. Timing
 - 4. Access
- B. A set of nine random variables for an oil assessment unit or a similar set for a gas assessment unit:
 - 1. Assessment-unit area (acres)
 - 2. Untested percentage of assessment-unit area (%)
 - 3. Percentage of untested assessment-unit area having potential for additions to reserves in the next 30 years (hereinafter shortened to "potential percentage of untested assessment-unit area") (%)
 - 4. Area per cell of untested cells (acres)
 - 5. Total recovery per cell (MMBO or BCFG)
 - 6. Ratio of first coproduct
 - 7. Ratio of second coproduct
 - 8. Percentage allocation to parcel (or land entity) (%)
 - Percentage allocation to offshore portion of parcel (%)

The assessment-unit area, untested percentage of assessment-unit area, potential percentage of untested assessmentunit area, and area per cell of untested cells are used to estimate the number of potential untested cells, as explained later.

C. A set of three descriptive parameters provided by the geologist for each of the nine given random variables:

- 1. Minimum (F_{100} fractile)
- 2. Median (F_{50} fractile)
- 3. Maximum (F_0 fractile)

FORSPAN ASSESSMENT MODEL FOR CONTINUOUS ACCUMULATIONS--BASIC INPUT DATA FORM (NOGA, Version 7, 6-30-00)

IDENTIFICATION INFORMATION

Assessment Geologist:			Date:
Region:			Number:
Province:			Number:
Total Petroleum System:.			Number:
Assessment Unit:			Number:
Based on Data as of:			
Notes from Assessor			
CH	ARACTERISTICS OF ASSE	ESSMENT UNIT	
Assessment-Unit type: Oil (<20,000	cfg/bo) <u>or</u> Gas (≥20,000 cfg	g/bo)	_
What is the minimum total recovery p	oer cell?(n	nmbo for oil A.U.; bcfg	for gas A.U.)
Number of tested cells:			
Number of tested cells with total recover	ry per cell <u>></u> minimum:		
Established (>24 cells <u>> min.)</u>	-rontier (1-24 cells) \sim min): (mmbo for all Λ $11 \cdot k$	Hypothetica	
1 total recovery per cell (for cells 2		2nd 2rd	ard ard
Assessment-Unit Probabilities:			
Attribute	Probab	pility of occurrence (0-1	1.0)
1. CHARGE: Adequate petroleum charg	e for an untested cell with to	otal recovery > minimu	 Im
2. ROCKS: Adequate reservoirs, traps,	seals for an untested cell wi	th total recovery ≥ min	iimum.
3. TIMING: Favorable geologic timing for	or an untested cell with total	recovery > minimum	
Assessment-Unit GEOLOGIC Probab	<i>ility</i> (Product of 1, 2, and 3)):	
4. ACCESS: Adequate location for nece	essary petroleum-related act	ivities for an untested	cell
with total recovery > minim	um		······
NO OF UNTESTED CELLS WITH	POTENTIAL FOR ADDITIC	ONS TO RESERVES	IN THE NEXT 30 YEARS
1. Total assessment-unit area (acres):	(uncertainty of a fixed value	e)	
, , , , , , , , , , , , , , , , , , ,	minimum	median	maximum
2. Area per cell of untested cells having	g potential for additions to re	eserves in next 30 yea	rs (acres):
(values are inherently variable)			
calculated mean	minimum	median	maximum
3. Percentage of total assessment-unit	area that is untested (%):	(uncertainty of a fixed	value)
	minimum	median	maximum
1 Demonstrand of untracted accountract	unit area that has not at -	for additions to recer	voo in
4. Percentage of untested assessment	-unit area that has potential	IOI additions to reserv	es m
(upportainty of a fixed value)	minimum	modion	movimum
(uncertainty of a fixed value)		meulan	

Analytic Resource Assessment Method for Continuous Petroleum Accumulations—The ACCESS Assessment Method							
	Assessment Unit (name	e, no.)					
TOTAL RECOVERY PER CELL							
Total recovery per cell for untested cells having potential for additions to reserves in next 30 years: (values are inherently variable)							
(mmbo for oil A.U.; bcfg for gas A.U.)	minimum	median	maximum				
AVERAGE COPRODUCT RATIOS FOR UNTESTED CELLS, TO ASSESS COPRODUCTS							
Oil assessment unit: Gas/oil ratio (cfg/bo) NGL/gas ratio (bngl/mmcfg)	minimum	median	maximum 				
Gas assessment unit: Liquids/gas ratio (bliq/mmcfg)	·····						
SELECT	ED ANCILLARY DATA	FOR UNTESTED CELLS					
Oil assessment unit: API gravity of oil (degrees) Sulfur content of oil (%) Drilling depth (m) Depth (m) of water (if applicable)		median median	maximum 				
Gas assessment unit: Inert-gas content (%) CO ₂ content (%) Hydrogen-sulfide content (%) Drilling depth (m) Depth (m) of water (if applicable)	·····						

4 Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah

Assessment Unit (name, no.) Mowry Continuous Gas, Assessment Unit 50370261

ALLOCATIONS OF POTENTIAL ADDITIONS TO RESERVES TO STATES

Surface Allocations (uncertainty of a fixed value)

1. Colorado	_represents _	areal % of the assessment unit		
Oil in oil assessment unit: Volume % in entity Portion of volume % that is offshore (0-100%)	minimum	median	maximum	
Gas in gas assessment unit: Volume % in entity Portion of volume % that is offshore (0-100%)				
2. <u>Utah</u>	_represents _	areal % of the assessmen	t unit	
Oil in oil assessment unit: Volume % in entity Portion of volume % that is offshore (0-100%)	minimum	median	maximum	
Gas in gas assessment unit: Volume % in entity Portion of volume % that is offshore (0-100%)				
3. Wyoming	_represents _	areal % of the assessmen	t unit	
Oil in oil assessment unit: Volume % in entity Portion of volume % that is offshore (0-100%)	minimum	median	maximum	
Gas in gas assessment unit: Volume % in entity				
Portion of volume % that is offshore (0-100%)				
4	_represents _	areal % of the assessmen	t unit	
Oil in oil assessment unit: Volume % in entity Portion of volume % that is offshore (0-100%)	minimum	median	maximum	
Gas in gas assessment unit:				
Portion of volume % that is offshore (0-100%)				

Analytic Probabilistic Method

The geologic assessment model FORSPAN is a description of a complex probability problem that needs to be solved for the estimates of potential additions to reserves. The method derived herein, called ACCESS, is a system that solves the problem. That is, the model FORSPAN poses the problem, and the method ACCESS offers a solution. Simply stated, ACCESS is a quantitative solution of the data provided in FORSPAN.

The nine given random variables are assigned probability distributions as probability models that are based on the descriptive parameters (F_{100} , F_{50} , and F_0). That is, each given random variable is assigned a probability distribution with the specified descriptive parameters of minimum, median, and maximum. The ACCESS method does not depend upon the specific assignment of probability distributions in that many assignments could be accommodated by modifications of ACCESS. The assignment of a particular probability distribution is an operational decision. The following probability distributions were assigned to the set of nine given random variables for an oil assessment unit or for a gas assessment unit:

- 1. Assessment-unit area: Median-based triangular distribution
- 2. Untested percentage: Median-based triangular distribution
- 3. Potential percentage of untested area: Median-based triangular distribution
- 4. Area per cell: Median-based triangular distribution
- 5. Total recovery per cell: Shifted truncated lognormal distribution
- 6. Ratio of first coproduct: Median-based triangular distribution
- Ratio of second coproduct: Median-based triangular distribution
- 8. Percentage allocation to parcel (or land entity): Median-based triangular distribution
- 9. Percentage allocation to offshore portion of parcel: Median-based triangular distribution

The mathematical equations for the median-based triangular distribution are derived from probability theory (Crovelli, 1999). The basic probability theory of the triangular distribution can be found in Law and Kelton (1991). The probability theory of the lognormal distribution is given in Aitchison and Brown (1957).

A probabilistic method was derived that combines the given random variables of the geologic assessment model (FORSPAN) to determine parameters (especially, the mean, standard deviation, F_{95} , F_{50} , and F_5) of new random variables of interest, which are functions of the given random variables. The new random variables of interest are the following measures of potential additions to reserves:

- Oil in oil assessment unit
- Gas in oil assessment unit
- NGL in oil assessment unit

- Gas in gas assessment unit
- Total liquids in gas assessment unit

A probabilistic method is required to compute the estimates in the form of parameters (especially, the mean for a point estimate, and fractiles F_{95} and F_5 for an interval estimate) of a probability distribution. An analytic probabilistic method is a probabilistic method that uses mathematical equations from probability theory to obtain the estimates of the potential additions to reserves in an assessment unit. The ACCESS method is an analytic probabilistic method that was developed by deriving the necessary mathematical equations based upon conditional probability theory and laws of expectation and variance. Three key features of ACCESS are the following:

- ACCESS relates the input and output parameters with mathematical equations.
- ACCESS computes the means, standard deviations, minimums, and maximums exactly.
- ACCESS computes the estimates instantaneously.
- For example, in the case of gas in a gas assessment

unit, the following relationships are developed for the random variables:

- N: Number of potential untested cells
- *X*: Total recovery per cell (BCFG)
- Y: Gas in gas assessment unit (BCFG)

$$Y = \sum_{i=1}^{N} X_i$$

The random variable *Y* is equal to the sum of a random number *N* of random variables X_i (total recoveries per cell). The mean and standard deviation of *Y* can be derived from the theory of conditional probability and conditional expectation (Ross, 1993). Parameters of particular interest for gas in a gas assessment unit are the mean (μ_Y), standard deviation (σ_Y), minimum [(*Min*(*Y*))], and maximum [(*Max*(*Y*))]:

$$\mu_{Y} = \mu_{N}\mu_{X}$$

$$\sigma_{Y} = \sqrt{\mu_{N}\sigma_{X}^{2} + \mu_{X}^{2}\sigma_{N}^{2}}$$

$$Min(Y) = Min(N)Min(X)$$

$$Max(Y) = Max(N)Max(X)$$

Many of the mathematical equations for parameters of the new random variables of interest in the ACCESS method are derived using conditional probability theory (Crovelli, 1992). A simplified flow chart of the analytic probabilistic method for resource assessment of continuous oil and gas accumulations—the ACCESS method—is displayed in figure 2. The number of potential untested cells and the total recovery per cell are combined probabilistically to obtain the estimates of potential additions to reserves in an assessment unit.

Figure 2. Simplified flow chart of analytic probabilistic method for resource assessment of continuous oil and gas accumulations the ACCESS method. Three operations or steps describe how to use the assessment-unit area, untested percentage of assessment-unit area, potential percentage of untested assessment-unit area, and area per cell of untested cells to estimate the number of potential untested cells.

Step 1. The untested percentage of assessment-unit area and potential percentage of untested assessment-unit area are multiplied probabilistically to obtain the potential untested percentage of assessment unit. The following random variables are defined:

- R: Untested percentage of assessment-unit area
- S: Potential percentage of untested assessment-unit area
- T: Potential untested percentage of assessment-unit area

T = R * S

The mean (μ_T) and standard deviation (σ_T) of *T* are:

$$\mu_T = \mu_R \mu_S / 100$$

$$\sigma_T = (1/100) \sqrt{\mu_R^2 \sigma_S^2 + \mu_S^2 \sigma_R^2 + \sigma_R^2 \sigma_S^2}$$

Step 2. The potential untested percentage of assessmentunit area (T) and assessment-unit area are multiplied probabilistically to obtain the potential untested area of assessment unit. The following additional random variables are defined:

- *U*: Assessment-unit area
- W: Potential untested area of assessment unit

W = T * U

The mean (μ_W) and standard deviation (σ_W) of *W* are:

$$\mu_W = \mu_T \mu_U / 100$$

$$\sigma_W = (1/100) \sqrt{\mu_T^2 \sigma_U^2 + \mu_U^2 \sigma_T^2 + \sigma_T^2 \sigma_U^2}$$

Step 3. The potential untested area of the assessment unit (W) and area per cell of untested cells are combined to generate the number of potential untested cells. The following additional random variables are defined:

V: Area per cell of untested cells

N: Number of potential untested cells

$$W = \sum_{i=1}^{N} V_i$$

The mean (μ_N) and standard deviation (σ_N) of *N* are:

$$\mu_N = \mu_W / \mu_V$$
$$\sigma_N = \sqrt{(\sigma_W^2 - \mu_N \sigma_V^2) / \mu_V^2}$$

This sequence of calculations for the number of potential untested cells is briefly outlined in the simplified flow chart of figure 3.

Spreadsheet System

Given the geologic assessment model (the FORSPAN model), the analytic probabilistic method is used as the basis for a spreadsheet probability system called Analytic Cellbased Continuous Energy Spreadsheet System (ACCESS). ACCESS consists of a series of 54 panels in the spreadsheet. The individual panel numbers and contents of the spreadsheet ACCESS are given in table 1. A panel is a set of approximately 11 columns of related calculations. Because the total number of columns in ACCESS is 600 columns, ACCESS is constructed as a workbook with four worksheets called Cond (Conditional), Unc1 (Unconditional-1), Unc2 (Unconditional-2), and Numb (Number). Cond contains Panels 1-22; Unc1 contains Panels 23–34; Unc2, Panels 35–46; and Numb, Panels 47–54. Worksheet Cond is linked to the worksheet Numb. Worksheets Unc1 and Unc2 are linked to the worksheet Cond. The topics included in the worksheets Cond, Unc1, Unc2, and Numb are the following:

- Worksheet Cond: Input data from the data form (Panels 1–4), probability distribution calculations (Panels 5–10), and conditional (unrisked) resource estimates (Panels 11–22).
- Worksheet Unc1: Unconditional-1 resource estimates (Panels 23–34), which are risked using the geologic (charge, rocks, and timing) probability of the assessment unit.
- Worksheet Unc2: Unconditional-2 resource estimates (Panels 35–46), which are risked using both the geologic and the access probabilities of the assessment unit. The "geoacc" probability is the product of the geologic probability and the access probability.
- Worksheet Numb: Input data (Panel 47), and probability distribution calculations (Panels 48–54) for the number of potential untested cells.

A probability system is an orderly collection of random variables logically related in terms of their probability distributions and parameters. In the spreadsheet probability system ACCESS, the computed estimates (Panels 11–46) of potential additions to reserves are grouped into nested categories.

The first grouping is by type of risking:

- Conditional (unrisked) estimates
- Unconditional-1 (risked) estimates

• Unconditional-2 (risked) estimates Each type of risking has various areas:

- Assessment unit
- Assessment unit
 Dancel (an land on
- Parcel (or land entity)

• Offshore portion of parcel

Each area has various commodities:

- Oil in oil assessment unit or gas in gas assessment unit
- Gas in oil assessment unit or liquids in gas assessment unit
- NGL in oil assessment unit or oil in gas assessment unit

• Total in oil assessment unit or total in gas assessment unit

Each commodity has various parameters:

- Mean
- Standard deviation
- Fractiles $(F_{100}, F_{95}, F_{75}, F_{50}, F_{25}, F_5, and F_0)$

The primary estimates are the mean, median (F_{50}), and fractiles F_{95} and F_5 .

Table 1. Spreadsheet ACCESS panel numbers and contents.

- 1. Input data: Assessment-unit probabilities
- 2. Input data: Total recovery per cell
- 3. Input data: Ratios used to assess coproducts
- 4. Input data: Percent allocation to parcel and offshore portion of parcel
- 5. Number of potential untested cells: Computed parameters
- 6. Total recovery per cell: Truncated shifted lognormal distribution
- 7. Ratios used to assess coproducts: Median-based triangular distribution
- 8. Ratios used to assess coproducts: Median-based triangular distribution
- 9. Percent allocation to parcel: Median-based triangular distribution
- 10. Percent allocation to offshore: Median-based triangular distribution
- 11. Cond. estimates in assessment unit: Oil in oil A.U. or gas in gas A.U.
- 12. Cond. estimates in assessment unit: Gas in oil A.U. or liquids in gas A.U.
- 13. Cond. estimates in assessment unit: NGL in oil A.U. or oil in gas A.U.
- 14. Cond. estimates in assessment unit: Total in oil A.U. or total in gas A.U.
- 15. Cond. allocation to parcel: Oil in oil A.U. or gas in gas A.U.
- 16. Cond. allocation to parcel: Gas in oil A.U. or liquids in gas A.U.
- 17. Cond. allocation to parcel: NGL in oil A.U. or oil in gas A.U.
- 18. Cond. allocation to parcel: Total in oil A.U. or total in gas A.U.
- 19. Cond. allocation to offshore: Oil in oil A.U. or gas in gas A.U.
- 20. Cond. allocation to offshore: Gas in oil A.U. or liquids in gas A.U.
- 21. Cond. allocation to offshore: NGL in oil A.U. or oil in gas A.U.
- 22. Cond. allocation to offshore: Total in oil A.U. or total in gas A.U.
- 23. Unc1. estimates in assessment unit: Oil in oil A.U. or gas in gas A.U.
- 24. Unc1. estimates in assessment unit: Gas in oil A.U.

or liquids in gas A.U.

- 25. Unc1. estimates in assessment unit: NGL in oil A.U. or oil in gas A.U.
- 26. Unc1. estimates in assessment unit: Total in oil A.U. or total in gas A.U.
- 27. Unc1. allocation to parcel: Oil in oil A.U. or gas in gas A.U.
- 28. Unc1. allocation to parcel: Gas in oil A.U. or liquids in gas A.U.
- 29. Unc1. allocation to parcel: NGL in oil A.U. or oil in gas A.U.
- 30. Unc1. allocation to parcel: Total in oil A.U. or total in gas A.U.
- 31. Unc1. allocation to offshore: Oil in oil A.U. or gas in gas A.U.
- 32. Unc1. allocation to offshore: Gas in oil A.U. or liquids in gas A.U.
- 33. Unc1. allocation to offshore: NGL in oil A.U. or oil in gas A.U.
- 34. Unc1. allocation to offshore: Total in oil A.U. or total in gas A.U.
- 35. Unc2. estimates in assessment unit: Oil in oil A.U. or gas in gas A.U.
- 36. Unc2. estimates in assessment unit: Gas in oil A.U. or liquids in gas A.U.
- 37. Unc2. estimates in assessment unit: NGL in oil A.U. or oil in gas A.U.
- 38. Unc2. estimates in assessment unit: Total in oil A.U. or total in gas A.U.
- 39. Unc2. allocation to parcel: Oil in oil A.U. or gas in gas A.U.
- 40. Unc2. allocation to parcel: Gas in oil A.U. or liquids in gas A.U.
- 41. Unc2. allocation to parcel: NGL in oil A.U. or oil in gas A.U.
- 42. Unc2. allocation to parcel: Total in oil A.U. or total in gas A.U.
- 43. Unc2. allocation to offshore: Oil in oil A.U. or gas in gas A.U.
- 44. Unc2. allocation to offshore: Gas in oil A.U. or liquids in gas A.U.
- 45. Unc2. allocation to offshore: NGL in oil A.U. or oil in gas A.U.
- 46. Unc2. allocation to offshore: Total in oil A.U. or total in gas A.U.
- 47. Numb. input data: Assessment-unit area, untested %, potential/untested %, & area/cell
- 48. Numb. assessment-unit area: Median-based triangular distribution
- 49. Numb. untested percentage: Median-based triangular distribution
- 50. Numb. potential/untested percentage: Median-based triangular distribution
- 51. Numb. area per cell: Median-based triangular distribution

- Table 1—Continued. Spreadsheet ACCESS panel numbers and contents.
- 52. Numb. potential untested percentage: Lognormal distribution
- 53. Numb. potential untested area: Lognormal distribution
- 54. Numb. number of potential untested cells: Lognormal distribution

References Cited

- Aitchison, J., and Brown, J.A.C., 1957, The lognormal distribution: Cambridge, Cambridge University Press, 176 p.
- Crovelli, R.A., 1992, Probabilistic methodology for estimation of undiscovered petroleum resources in play analysis of the United States: Nonrenewable Resources, v. 1, p. 153–162.
- Crovelli, R.A., 1999, Probabilistic method for subdividing petroleum resources into depth slices: U.S. Geological Survey Open-File Report 99–343, 9 p.
- Crovelli, R.A., 2000, Analytic resource assessment method for continuous (unconventional) oil and gas accumulations— The "ACCESS" method: U.S. Geological Survey Open-File Report 00–044, 34 p.

- Law, A.M., and Kelton, W.D., 1991, Simulation modeling and analysis: New York, McGraw-Hill, Inc., 2d ed., 759 p.
- Ross, S.M., 1993, Introduction to probability models: New York, Academic Press, Inc., 5th ed., 556 p.
- Schmoker, J.W., 1999, U.S. Geological Survey assessment model for continuous (unconventional) oil and gas accumulations—The "FORSPAN" model: U.S. Geological Survey Bulletin 2168, 9 p.

Click here to return to Volume Title Page